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1. Introduction

In four dimensional Minkowski space spin degrees of freedom are known to be classified

by non-negative integers or half-integers. However, in dimensions higher than four spin

degrees of freedom are described by a set of (half)integers, according to the weights of

the Wigner’s little group. The simplest and the most developed are the cases of totally

symmetric [1 – 11] and totally antisymmetric fields [12 – 14]. All other types are referred to

collectively as mixed-symmetry. Mixed-symmetry fields naturally arise in field theories in

higher-dimensions, for instance, in (super)string theory [15].

The simplest mixed-symmetry fields were originally considered in [16] and [17]. The

most general type of mixed-symmetry fields was studied in [18 – 21] though, the rigorous

proof of the fact that the proposed in [20] fields/gauge symmetries content and equations
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describe massless particles properly was given in [22, 23]. In terms of BRST approach

mixed-symmetry fields, characterized by at most two non-zero weights, were studied in [24 –

27]. An elegant approach to the description of mixed-symmetry fields was proposed in [28 –

30] on the basis of the simplest mixed-symmetry fields.

In this paper massless mixed-symmetry fields are reformulated within the unfolded ap-

proach [31 – 33] because it is the unfolded approach that underlies the full nonlinear theory

of interacting massless fields with arbitrary totally symmetric spins [7], being the only ap-

proach succeeded in constructing the full theory, though exhaustive results concerned with

cubic vertices of higher-spin fields were obtained within the light-cone approach in [34 – 36].

Therefore, to unfold an arbitrary spin, viz., mixed-symmetry, fields in the Minkowski space

is considered as the first step towards the full nonlinear theory of arbitrary spin fields.

The main statement of the paper is that a free massless field with spin degrees of free-

dom characterized by an arbitrary bosonic or fermionic unitary irreducible representation

of the Wigner’s little algebra can be uniquely described within the unfolded approach, in

which all gauge symmetries are manifest. The unfolded system has the form of a covariant

constancy equation. The gauge fields and gauge parameters are differential forms on the

Minkowski space with values in certain irreducible representations of the Lorentz algebra,

i.e., irreducible tensors or spin-tensors. The full unfolded system is described in terms of a

single nilpotent operator σ−, whose cohomology groups correspond to independent differ-

ential gauge parameters, dynamical fields, gauge-invariant equations and Bianchi identities.

Another advantage of the unfolded approach is in that the equations for bosons and

fermions have literally the same form, the only difference being in change of tensor repre-

sentations, in which the fields takes values, by the corresponding spin-tensors. The form

and the order of dynamical equations, second for bosons and first for fermions, turns out to

be encoded in σ− cohomology. In fact the unfolded system is constructed for the bosonic

case and, then, proved to have the same form for fermions. The similarity between bosons

and fermions within the unfolded approach can have deep applications in theories with

supersymmetries.

Despite the deep relations of the unfolded approach to the nonlinear theory of higher-

spin fields, unfolding by itself provides a very powerfull method for analysis of dynamical

systems. For instance, once some linear dynamical system is unfolded it is given a direct

interpretation in terms of Lie algebras/modules and all gauge symmetries become manifest.

The paper is organized as follows: the main result, i.e., the unfolded form of equa-

tions describing a massless field with the spin that corresponds to an arbitrary irreducible

representation of the Wigner’s little algebra is stated in section 3. All the necessary infor-

mation about mixed-symmetry fields in the Minkowski space-time is collected in section 4.

The basic facts concerning the unfolded approach, viz., the very definition, the relation

to Lie algebras/modules, to the Chevalley-Eilenberg cohomology are recalled in section 5,

illustrated on the examples of a scalar field, spin-one field and totally symmetric spin-s

and spin-(s+ 1
2) fields in section 5.3. The proof of the general statement of section 3 is in

section 6. The physical degrees of freedom are analyzed in section 6.3. The discussion of

the results and conclusions are in section 7. Multi-index notation and basic facts on Young

diagrams and irreducible representations are collected in appendices.
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2. Conventions

As the most general type of irreducible representations of orthogonal algebras, viz., the

Wigner’s little algebra, the Lorentz algebra, is considered, the essential use is made of

Young diagrams’ language. A certain Young diagram is denoted by Y with subscripts or

directly enumerating the lengths of the rows as Y{s1, s2, . . .} or, when rows of equal lengths

are combined to blocks, as Y{(s1, p1), (s2, p2), . . .}, pi being the number of rows of length

si. Loosely speaking we do not make any difference between irreducible finite-dimensional

representations of orthogonal algebras, Young diagrams1 and the corresponding irreducible

(spin)-tensors,2 e.g., rank-two symmetric traceless tensor-valued field φab, i.e., φab = φba

and ηabφ
ab = 0, can be equivalently denoted either as φ or φY with Y = Y{2} ≡

Y{(2, 1)}. The scalar representation Y{0} is denoted by •. Unless otherwise stated, all

Young diagrams are of orthogonal algebras, viz., so(d− 1, 1) or so(d− 2). For more detail

on Young diagrams see in appendix B. Greek indices µ, ν,. . . =0. . . (d-1) are the world

indices of the Minkowski space-time Md. d ≡ dxµ ∂
∂xµ is the exterior differential on Md.

The degree of differentials forms onMd is indicated by the bold subscript, e.g., a degree-q

differential form ω on Md with values in so(d − 1, 1)-irrep characterized by the Young

diagram Y is denoted as ωY
q (loosely speaking Y-valued degree-q form ωY

q ). The wedge

symbol ∧ is systematically omitted. Lowercase Latin letters a, b,. . . =0. . . (d-1) are vector

indices of so(d − 1, 1), fiber indices of the sections of tensor bundles over the Minkowski

space-time. Greek indices α, β, γ = 1 . . . 2[ d
2
] are fiber spinor indices of so(d − 1, 1). The

multi-index condensed notation is used in the paper: the (anti)-symmetrization is denoted

by placing the corresponding indices in (square) round brackets, for details on the multi-

index notation see appendix A.

3. Summary of results

The main statement of the paper is that given a unitary irreducible bosonic(fermionic) rep-

resentation of the massless Wigner’s little algebra so(d−2), which is characterized by Young

diagram Y = Y{(s1, p1), . . . , (sN , pN )} (Y = Y{(s1, p1), . . . , (sN , pN )} 1
2
), there exists a

uniquely determined unfolded system that describes a massless spin-Y field, with all gauge

symmetries being manifest. The system has the form of a covariant constancy equation

Dωp = 0, ωp ∈ Wp,

δωp = Dξp−1, ξp−1 ∈ Wp−1,

1In addition to the Young symmetry conditions, extra restrictions (with the aid of invariant tensors:

Levi-Civita for sl(d), metric and Levi-Civita for so(d)) have to be imposed on the tensors to make them

irreducible. In what follows it is important that irreducible so(d)-tensors are traceless. No special consid-

eration is given to (anti)-self dual fields, see appendix B.
2In the case of fermionic representations of orthogonal algebras, i.e., spin-tensors, the tensor part of a

spin-tensor (all but one spinor indices can be converted pairwise to tensor indices by means of Γ-matrices,

hence, we consider spin-tensors with one spinor index only) is characterized by Young diagram, which is

labeled by the subscript 1
2
, e.g., an irreducible rank-two symmetric tensor-spinor ψα;ab satisfies Γα

a βψ
β;ab = 0

and belongs to Y{2} 1

2

. The connection with the standard Gelfan-Zeitlin labels is obvious. Additional

conditions, viz., Majorana, Weyl and Majorana-Weyl are irrelevant to the problems concerned.
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δξp−1 = Dξp−2, ξp−2 ∈ Wp−2,

. . . . . . , . . . . . . ,

δξ1 = Dξ0, ξ0 ∈ W0, (3.1)

where W =
⊕∞

q=0Wq is certain graded space, D is a nilpotent operator of degree (+1),

D : Wq → Wq+1 and D2 = 0. Gauge fields take values in Wp, where p =
∑i=N

i=1 pi is

the height of Young diagram Y, the first level gauge parameters in Wp−1, the second level

gauge parameters inWp−2 and so on. The gauge invariance is manifest by virtue of D2 = 0.

The reducibility of gauge transformations is similar to those of totally anti-symmetric fields.

Space Wp, which contains the gauge fields of the unfolded system, is a graded by

nonnegative integer g = 0, 1, . . . set of differential forms Wp = {ωY0
q0
, ωY1

q1
, . . . , ω

Yg
qg , . . .},

q0 = p. Diagrams Yg that characterize so(d−1, 1)-irreducible representations, in which the

fields and gauge parameters take values, are uniquely determined by the initial diagram

Y = Y{(s1, p1), . . . , (sN , pN )}( 1
2
) of so(d− 2).

The dynamical field is incorporated in a p-form ωY0
p ∈ Wg=0

p that takes values in the

irreducible representation(irrep) of the Lorentz algebra so(d − 1, 1) that is characterized

by Young diagram Y0 of the form

sN − 1
pN

s2 − 1
p2

s1 − 1

p1

, (3.2)

i.e., it is obtained by cutting off the first column of Y. All other gauge fields in the system

are auxiliary and can be expressed in terms of derivatives of ωY0
p . It is convenient to

enumerate the Lorentz-irreps in which gauge fields ω
Yg
qg take values by a pair {n, k} of

integers. Roughly speaking, the first integer is related to the number of the block of Y,

n = N, . . . , 0, the second one is related to the relative length of the n-th and (n + 1)-

th blocks. The so(d − 1, 1)-irreps Yg=0,. . . ,Yg=(sN−1) are given by Y{n,k} with n = N ,

k = 0 . . . (sN − 1) of the form

k

sN − 1
pN

s2 − 1
p2

s1 − 1

p1

. (3.3)
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The diagrams Yg with g = sN . . . (sN−1 − 1) are given by Y{n,k} with n = N − 1, k =

0 . . . (sN−1 − sN − 1) of the form

sN−1

sN − 1
pN

k

s2 − 1
p2

s1 − 1

p1

. (3.4)

and analogously for the rest of Yg with g < s1. The diagrams Yg with g = s1, s1 + 1, . . .

are given by Y{n,k} with n = 0, k = 0, 1, . . . of the form

sN − 1

sN − 1
pN

s2−s3−1

s2 − 1
p2

s1−s2−1

s1 − 1

p1

k + 1

. (3.5)

Gauge fields ω
Yg
qg for g ∼ {n = N, k} are (p1 + · · · + pN )-forms, gauge fields ω

Yg
qg for

g ∼ {n = N−1, k} are (p1 + · · ·+pN−1)-forms, . . . , gauge fields ω
Yg
qg for g ∼ {n = 0, k} are

zero-forms. Hence, form degree function qg is completely defined. The grade g is equal to

the element number (starting from zero) in the set of pairs {n, k} ordered by k in increasing

order and, then, by n in decreasing order.

Space Wp−1, which contains the first level gauge parameters of the system, is a set of

forms with values in the same so(d− 1, 1)-irreps as gauge fields but the form degree is less

by one, i.e., Wp−1 = {ξY0
q0−1, ξ

Y1
q1−1, . . . , ξ

Yg

qg−1, . . .}. The sector Wg
p−1 for g ≥ s1 is trivial

du to qg = 0. Analogously, spaces Wq for q < p − 1 and q > p can be defined. To sum

up, the element of space Wp±i at grade g ∼ {n, k} is a degree-(qg ± i) form with values in

Yg ≡ Y{n,k} irrep of the Lorentz algebra.

The Minkowski background space is described in terms of vielbein(tetrad) ha
µdx

µ and

Lorentz spin-connection ̟a,b
µ dxµ, which determines Lorentz-covariant derivative DL =

d+̟.

When reduced to Wg
q the full system has the form

DLω
Yg
qg = σ−

(

ω
Yg+1
qg+1

)

, ω
Yg
qg ∈ W

g
p, ω

Yg+1
qg+1

∈ Wg+1
p ,

δω
Yg
qg = DLξ

Yg

qg−1 + σ−

(

ξ
Yg+1

qg+1−1

)

, ξ
Yg

qg−1 ∈ W
g
p−1, ξ

Yg+1

qg+1−1 ∈ W
g+1
p−1,

δξ
Yg

qg−1 = · · · , (3.6)
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where operator D is a sum D = DL − σ− of Lorentz-covariant derivative DL and certain

nilpotent operator σ− :
∧q ⊗Yg+1 →

∧q+∆g+1⊗Yg, ∆g = qg − qg+1 ≥ 0, (σ−)2 = 0, built

of background vielbein ha
µdx

µ, which is unambiguously fixed by the symmetry of Yg and

Yg+1. σ− contracts (∆g + 1) vielbeins ha with the tensor representing Yg+1 to obtain the

tensor with the symmetry of Yg, appropriate Young symmetrizers are implied.

Since σ− affects tensor indices only it is correctly defined on spin-tensors too and does

not violate the Γ-tracelessness condition. The unfolded equations for fermions have the

same form as for bosons, the irreducible tensors are to be replaced with corresponding

spin-tensors.

The case of the last block of the length one, i.e., single column, is not spe-

cial but requires some comments. Since (sN − 1) = 0, it is not possible to add a

cell to the bottom-left of the N -th block of Y0, therefore, Y{n=N,k=0} ≡ Y0 is the

only diagram with n = N and diagram Y{n=N−1,k=0} ≡ Yg=1 has the symmetry of

Y{(s1 − 1, p1), . . . , (sN−1 − 1, pN−1), (1, pN + 1)}.

Subspace W
{n,k}
q with definite n forms an irreducible module of iso(d− 1, 1), whereas

the subspace with definite both n and k forms a finite-dimensional irreducible module of

so(d − 1, 1), i.e., an irreducible Lorentz tensor, characterized by Yg, as was stated above.

The intervals of constancy of qg correspond to gn,k with definite n, i.e., the set of forms,

on which a certain irreducible iso(d− 1, 1)-module is realized, all have the same degree.

Let us also note that Wk≥p are infinite-dimensional, whereas Wk<p are finite-

dimensional. The higher degree spaces Wk≥p correspond to the equations of motion

(Wk=p+1) and Bianchi identities (Wk>p+1), which manifest the gauge symmetries. Most

of the equations express higher grade g > 0 fields via the derivatives of physical field ωY0
q0

and only certain elements of Wg=2
k=p+1 impose on ωY0

q0
second order dynamical equations.

The significance of the fields with g > 0 is to make all gauge symmetries be manifest.

4. Mixed-symmetry fields in Minkowski space

The types of the Minkowski space particles, being, by definition, in one-to-one correspon-

dence with unitary irreducible representations(uirrep) of the Poincare algebra iso(d−1, 1),

in the case of four space-time dimensions were classified by Wigner in [37].

Leaving out the details of the Wigner’s construction, for recent reviews and for general-

ization to an arbitrary space-time dimension d see [38], important is that given m2 > 0 and

a uirrep Y of the Wigner’s little algebra, being so(d−1) form2 > 0 and so(d−2) form2 = 0,

there exists a standard procedure to construct a uirrep of iso(d − 1, 1), which is called a

massive(massless) particle of spin-Y. So-called continuous or infinite spin particles [37, 39]

are not considered in this paper. Therefore, physical degrees of freedom for massive and

massless particles are classified by irreducible tensors of so(d−1) and so(d−2), respectively.

More elaborated are the two cases of totally-symmetric spin-s particles Y = Y{s} ≡

Y{(s, 1)} [40, 1, 10], viz., scalar, vector, graviton, and of totally anti-symmetric spin-

p particles Y = Y{(1, p)} [12 – 14]. The others are referred to collectively as mixed-

symmetry, the simplest one being Y = Y{2, 1} ≡ Y{(2, 1), (1, 1)}.

– 6 –
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Yet different problem is to realize a uirrep of iso(d − 1, 1) on the solutions of a wave

equation for a field φYM
(x), which takes values in a certain representation YM of the

Lorentz algebra so(d − 1, 1), i.e., φYM
(x) is a Lorentz tensor or a set of tensors. As field

theories free particles can be described in either non-gauge or gauge way, in the former case

a uirrep of iso(d− 1, 1) is realized on the solutions of the wave equation directly, whereas

for the latter case a uirrep of iso(d − 1, 1) is realized on the quotient of the solutions by

certain specific solutions, called pure gauge. The wave equation (� + m2)φYM
(x) = 0,

which fixes the quadratic Casimir m2 of iso(d− 1, 1), is generally supplemented with a set

of algebraic/differential constraints to single out an irreducible, in the sense of the little

algebra, component. Field φYM
(x) takes values in a certain finite-dimensional represen-

tation of so(d − 1, 1), which is not irreducible in most cases, nevertheless it can be made

irreducible when dealing with free equations of motion only. Yet more different problem

is to realize an irrep of iso(d − 1, 1) on the solutions of the variational problem for some

action, in most cases the procedure requires a set of auxiliary fields, which carry no physical

degrees of freedom.

The choice of so(d−1, 1)-representation YM (even if irreducible), in which field φYM
(x)

takes values, is not unique, e.g., a free massless spin-one particle can be described either

by a gauge potential Aµ(x) subjected to

�Aµ − ∂µ∂
νAν = 0, δAµ = ∂µξ, (4.1)

or by a field strength Fµν subjected to

∂µFµν = 0, ∂[µFλρ] = 0. (4.2)

In the case of a massless spin-two particle (Y =
so(d−2)), in addition to the conventional

description in terms of the metric gµν

Rµν −
1

2
gµνR = 0 (4.3)

the Weyl tensor Cµν,λρ known to have the symmetry of 3 can describe a free spin-two in

a non gauge way

∂[µCµµ],νν = 0, ∂λCµλ,νν = 0. (4.4)

Another example is a 4d massless scalar particle, which can be described either by a

scalar field φ(x) subjected to �φ = 0 or, more exotically, by an antisymmetric gauge field

ωµν (so-called notoph [41]) subjected to

�ωµν − ∂µ∂
ρωρν + ∂ν∂

ρωρµ = 0, δωµν = ∂µξν − ∂νξµ. (4.5)

This equation describes a massless particle with spin-
so(d−2) ≡ Y{1, 1}

so(d−2), which

for d = 4 by virtue of the so(d − 2) Levi-Civita tensor εij is equivalent to a scalar,

Y{1, 1}
so(d−2) ∼ Y{0, 0}

so(d−2). On the other hand, a scalar particle can be described by

3In antisymmetric basis Cµν,λρ satisfies Cµν,λρ = −Cνµ,λρ, Cµν,λρ = −Cµν,ρλ and C[µν,λ]ρ = 0.

– 7 –



J
H
E
P
0
7
(
2
0
0
8
)
0
0
4

a rank-d antisymmetric field ωµ1...µd
satisfying �ωµ1...µd

= 0, where the use of so(d− 1, 1)-

duality is made of, ωµ1...µd
= εµ1...µd

φ. These two types of duality are referred to as trivial.

The general statement is that free particles can be described by an infinite number of

ways, called dual descriptions [42 – 46], but dual theories exhibit certain difficulties while

introducing interactions [47 – 50], e.g., despite the fact that free massless spin-one and

spin-two particles can be described by the Maxwell field strength and by the Weyl tensor,

respectively, introducing interactions requires the corresponding gauge potentials Aµ and

gµν to be brought in.

There exists a distinguished choice of so(d−1, 1)-irrep YM , in which field φYM
(x) takes

values, that can be referred to as fundamental or minimal. For the minimal description of a

spin-Y particle the spin degrees of freedom and the so(d−1, 1)-irrep YM are characterized

by the same Young diagram, i.e., YM = Y, e.g., a spin-one particle by Aµ, a spin-two by

gµν . All other descriptions are referred to as dual. It is the minimal descriptions that will

be discussed further, by this reason the term spin-Y particle can be substituted for more

accepted spin-Y field.

A massive totally symmetric spin-s field can be described [51] by a totally symmetric

tensor field φ(µ1...µs) subjected to

(� +m2)φµ1...µs = 0,

∂νφνµ2...µs = 0,

φν
νµ3...µs

= 0,

(4.6)

where the last equation (tracelessness condition) makes the tensor irreducible in the

so(d− 1, 1) sense, the first one puts the system on-mass-shell and the second one projects

out the components orthogonal to the momentum, restricting φµ1...µs to contain only a

spin-s irrep of so(d− 1).

Analogously, a massive totally anti-symmetric spin-p field, i.e., Y = Y{(1, p)}, can be

described by a totally anti-symmetric tensor field ω[µ1...µp] subjected to

(� +m2)ωµ1...µp = 0,

∂νωνµ2...µp = 0,
(4.7)

where the tracelessness condition becomes trivial for anti-symmetric tensors.

These two results are easily generalized to an arbitrary spin-Y{s1, . . . , sn} massive

field, which can be minimally described by a symmetric in each group of indices tensor

field φµ1(s1),µ2(s2),...,µn(sn) subjected to

(� +m2)φµ1(s1),µ2(s2),...,µn(sn) = 0,

∂µiφµ1(s1),µ2(s2),...,µn(sn) = 0, i ∈ [1, n],

φµ1(s1),...,(µk(sk),...,µk)µi(si−1),...,µn(sn) = 0, k ∈ [1, n − 1], k < i,

ηµiµjφµ1(s1),µ2(s2),...,µn(sn) = 0, i, j ∈ [1, n],

(4.8)

where the last two conditions are just the Young symmetry and the tracelessness conditions,

which make the field carry an irrep-Y{s1, . . . , sn} of so(d − 1, 1), and can be thought of

– 8 –
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as the part of the definition of field φYM
(x). The first equation puts the system on-mass-

shell, the second one projects out all so(d− 1)-irreps, which the tensor φµ1(s1),µ2(s2),...,µp(sp)

decomposes into, except for the one with the symmetry of Y{s1, . . . , sn} so(d−1)-diagram.

Let D
(
m2;Y{s1, . . . , sn}

)
be an iso(d − 1, 1) module extracted by (4.8), being

irreducible for m2 6= 0 or for Y{0} (scalar field). Since minimally described massless

fields are gauge theories a uirrep H (0;Y{s1, . . . , sn}) of iso(d − 1, 1) corresponding to a

massless spin-Y{s1, . . . , sn} field should be defined as appropriate quotient by the pure

gauge solutions of the form

0 −→ gauge solutions −→ all solutions −→ H (0;Y{s1, . . . , sn}) −→ 0, (4.9)

where the sequence is non-split, as there is no so(d − 1, 1)-covariant way to extract

so(d − 2)-irrep Y{s1, . . . , sn} from the Lorentz tensor with the same symmetry of

Y{s1, . . . , sn} by virtue of a single so(d− 1, 1)-vector, the momentum pµ ∼ ∂µ.

A massless totally symmetric spin-s field can be described as the quotient of (4.6) with

m2 = 0 by pure gauge solutions of the form δφµ1...µs = ∂(µ1
ξµ2...µs), where ξµ1...µs−1 is a

totally symmetric gauge parameter subjected to the equations of the same form (4.6), i.e.,

on-mass-shell, tracelessness and transversality, thus, belonging to D (0;Y{s− 1}). The

definition of H (0;Y{s}) is given by

0 −→ D (0;Y{(s − 1, 1)}) −→ D (0;Y{(s, 1)}) −→ H (0;Y{(s, 1)}) −→ 0. (4.10)

There is a bit difference for a totally anti-symmetric spin-p massless field. Pure gauge

solutions are defined analogously as δωµ1...µp = ∂[µ1
ξµ2...µp], where ξ[µ1...µp−1] is a rank-

(p − 1) antisymmetric gauge parameter subjected to the equation of the same form (4.7)

and, thus, belonging to D (0;Y{(1, p − 1)}). In contrast to a totally symmetric spin-s

massless field, the gauge transformations are reducible in the sense that δωµ1...µp ≡ 0

provided that one transforms gauge parameter δξµ1...µp−1 = ∂[µ1
ξµ2...µp−1] with a second

level rank-(p− 2) antisymmetric gauge parameter ξ[µ1...µp−2], and so on. Some components

(parallel to the momentum) of the first level gauge parameter ξµ1...µp−1 do not contribute

to the gauge law for ωµ1...µp , these are represented by the second level gauge parameter

ξµ1...µp−2 modulo those components of ξµ1...µp−2 that do not contribute to ξµ1...µp−1 and

so on till δξµ = ∂µξ. Gauge parameters ξµ1...µp−1 , ξµ1...µp−k
, k ∈ [1, p] and ξ are referred

to as the first level, the k-th level and the deepest level of reducibility, respectively. The

corresponding iso(d− 1, 1)-uirrep is given by a non-split exact sequence of the form

0 −→ D (0;Y{(0, 0)}) −→ D (0;Y{(1, 1)}) −→

. . . . . . −→ D (0;Y{(1, p)}) −→ H (0;Y{(1, p)}) −→ 0. (4.11)

For example, Maxwell gauge potential Aµ possesses gauge parameters of the first level only

as p = 1 in this case.

Though, a considerable success in describing on-mass-shell massless fields was

achieved, for instance, within the light-cone approach [52], there are many reasons to have

an off-shell gauge symmetry, i.e., to construct equations that are invariant with respect to
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gauge transformations with gauge parameters not subjected to �ξ = 0. To make the sym-

metry off-shell generally requires to relax the irreducibility of the so(d−1, 1)-representation

in which field φY(x) takes values.

For instance, a massless totally symmetric spin-s field can be described [53] by a

traceless rank-s symmetric field φµ1...µs with an off-shell gauge symmetry

�φµ1...µs − s∂(µ1
∂νφνµ2...µs) + s(s−1)

(d+2s−4)
η(µ1µ2

∂ν∂ρφνρµ3...µs) = 0, φν
νµ3...µs

= 0,

δφµ1...µs = ∂(µ1
ξµ2...µs), ξν

νµ3...µs−1
= 0, ∂νξνµ2...µs−1) = 0, (4.12)

where in order for φµ1...µs to be traceless the gauge parameter has to be not only traceless

but transverse also, this still being true for general mixed-symmetry fields. Apparently, to

get rid of any differential constraints on gauge parameters, the tracelessness constraint for

field φµ1...µs has to be relaxed. The same spin-s massless field can be described [1] by field

φµ1...µs subjected to4

�φµ1...µs − s∂(µ1
∂νφνµ2...µs) + s(s−1)

2
∂(µ1

∂µ2φ
ν
νµ3...µs)

= 0, φνρ
νρµ5...µs

= 0,

δφµ1...µs = ∂(µ1
ξµ2...µs), ξν

νµ3...µs−1
= 0,

(4.13)

where in order to get rid of any differential constraints on gauge parameters a tracelessness

is relaxed to a double-tracelessness, i.e., field φµ1...µs takes values in the direct sum of

two so(d − 1, 1)-irreps, being symmetric traceless tensors of ranks s and (s − 2). The

general statement is that for equations of motion to have an off-shell gauge symmetry the

so(d − 1, 1)-irrep in which field φY(x) takes values has to be reducible, with additional

direct summands representing certain nonzero traces. These additional fields are called

auxiliary and carry no physical degrees of freedom. Imposing certain gauge, equations (4.8)

can be restored.

A massless totally antisymmetric spin-p field can be described by an antisymmetric

rank-p tensor field ω[µ1...µp] subjected to

�ωµ1...µp − p∂[µ1
∂νωνµ2...µp] = 0, δωµ1...µp = ∂[µ1

ξµ2...µp], (4.14)

where the symmetry at the all levels of reducibility is manifest and off-shell, i.e.,

δξµ1...µp−1 = ∂[µ1
ξµ2...µp−1] for the second level gauge parameter ξµ1...µp−2 not subjected

to any differential constraints, and analogously for the gauge symmetries at deeper levels.

Much similar to totally anti-symmetric fields mixed-symmetry massless fields possess

reducible gauge transformations, i.e., for a field φ with equations of motion invariant under

gauge transformations δξ1φ =
∑

i1
∂ξi1

1 there exist the second level gauge transformations

δξ2ξ
i1
1 =

∑

i2
∂ξi2

2 such that δξ2φ ≡ 0, there exist the third level gauge transformations

δξ3ξ
i2
2 =

∑

i3
∂ξi3

3 such that δξ3ξ1 ≡ 0 and so on. The difference from totally anti-symmetric

fields is in that there are generally more than one gauge parameters at each level of re-

ducibility (enumerated by index ik at the k-th level).

4Obtained from the Lagrangian, equations of [1] have the form Gµ1...µs
− s(s−1)

4
η(µ1µ2

Gν
νµ3 ...µs) = 0,

where Gµ1...µs
is equal to (4.13), the two forms being equivalent.
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For instance, the simplest mixed-symmetry massless field has the spin- and can be

minimally described [16, 17] by a field φ[µµ],ν , which is anti-symmetric in the first two

indices and satisfies Young symmetry condition5 φ[µµ,ν] = 0. The equations of motion

�φµµ,λ + 2∂[µ∂
λφµ]λ,ν − ∂ν∂

λφµµ,λ − 2∂ν∂[µφ
λ

µ]λ,
= 0 (4.15)

are invariant under

δφµµ,ν = ∂[µξ
S
µ]ν + ∂[µξ

A
µ]ν − ∂νξ

A
µµ, (4.16)

with symmetric and anti-symmetric gauge parameters ξS
(µν) and ξA

[µν]. Let us stress that

to maintain an off-shell gauge symmetry field φ[µµ],ν has to take values in a reducible

so(d− 1, 1) representation, ⊕ , so does symmetric gauge parameter ξS
(µµ), ⊕•, which

is in accordance with φ ν
µν, 6= 0 and ξSν

ν 6= 0. Analogously to totally anti-symmetric fields

there exist second level gauge transformations with a vector parameter ξµ

δφµµ,ν = 0,

δξA
µν = 2

3
(∂µξν − ∂νξµ),

δξS
µν = ∂µξν + ∂νξµ.

(4.17)

In this case H

(

0;
)

is given by a non-split exact sequence of the form

0 −→ D (0; ) −→ D

(

0;
)

⊕D (0; ) −→ D

(

0;
)

−→ H

(

0;
)

−→ 0 (4.18)

In the general case of a massless spin-Y = Y{(s1, p1), . . . , (sN , pN )} field the depth of

reducibility of gauge transformations is equal to p =
∑i=N

i=1 pi, where p is the height of the

first column of the Young diagram and at the r-th level of reducibility gauge parameters

have the symmetry of

sN − 1

pN

kN

s2 − 1

p2

k2

s1 − 1

p1

k1

:
i=N∑

i=1

ki =
i=N∑

i=1

pi − r (4.19)

This pattern of reducibility of gauge transformations will be of great importance while

constructing the unfolded formulation in section 6. As is easily seen, at the first level of

5In more detail, the field φµν,λ satisfies φµν,λ = −φνµ,λ, φµν,λ + φνλ,µ + φλµ,ν = 0. Equivalently, a

symmetric basis can be used, i.e, φS
µν,λ = φS

νµ,λ, φS
µν,λ + φS

νλ,µ + φS
λµ,ν = 0. The two bases are related by

φS
(µν),λ = 1√

3
(φA

µλ,ν + φA
νλ,µ), φA

[µν],λ = 1√
3
(φS

µλ,ν − φS
νλ,µ).
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reducibility, the gauge parameters are various tensors, whose Lorentz Young diagrams are

obtained by cutting off one cell from the original so(d − 2)-diagram in all possible ways,

i.e., the number of gauge parameters at the first level is equal to the number of blocks N ,

e.g., two for spin- . There is only one gauge parameter at the deepest level of reducibility,

whose Young diagram is obtained by cutting off the first column from Y, e.g., for spin- .

This pattern corresponds, of course, to on-shell equations, i.e., the gauge parameters

taking values in so(d − 1, 1)-irreps of Young symmetry (4.19) are subjected to (4.8)-like

equations. To obtain an off-shell gauge symmetry the field content has to be extended to

take values in certain reducible so(d − 1, 1)-representations, additional components turn

out can be identified with certain traces of a single field with the symmetry of Y as an

sl(d)-tensor. In general, gauge parameters are also reducible tensors with the symmetry

of (4.19). In the case of a spin- massless field, the trace φ ν
µν, in the sector of fields and the

trace ξSν
ν in the sector of gauge parameters are the additional components. In the general

case of a spin-Y = Y{s1, . . . , sn}massless field, field φµ1(s1),µ2(s2),...,µn(sn) should satisfy [20]

ηµiµiηµiµiφµ1(s1),µ2(s2),...,µn(sn) = 0, i ∈ [1, n], (4.20)

which is a generalization of the Fronsdal’s double-trace condition (4.13). As it will

be shown, this condition naturally arises in the unfolded approach. Note that double-

tracelessness is imposed on each group of symmetric indices and it is not required for

cross-traces to vanish.

Let a generalized Weyl tensor for a minimally described spin-Y massless field be a

gauge-invariant combination of the least order in derivatives of field φY(x) that is al-

lowed to be nonzero on-mass-shell. On the other hand it is the generalized Weyl tensor

that the minimal non-gauge description of a massless spin-Y field is based on. For a

spin-Y = Y{(s1, p1), . . . , (sN , pN )}
so(d−2) massless field the generalized Weyl tensor has

the symmetry of Y{(s1, p1 + 1), (s2, p2), . . . , (sN , pN )}
so(d−1,1) and is of the s1-th order in

derivatives. In the case of spin-one (Y =
so(d−2)) Maxwell field strength Fµν with the

symmetry of can be also called a generalized Weyl tensor.

Fermionic mixed-symmetry fields share most features of bosonic ones, viz., the re-

ducibility of gauge transformations, the enlargement of the field content for the equations

of motion to possess an off-shell gauge invariance. The difference is that the equations for

fermions have the first order in derivatives and the irreducibility of spin-tensors is achieved

by the Γ-tracelessness condition6 instead of the tracelessness one.

For example, a massless totally symmetric spin-(s + 1
2) field can be described off-

shell [54] by a totally symmetric spin-tensor field φα;(µ1...µs) subjected to7

/∂φµ1...µs − s∂(µ1
Γνφνµ2...µs) = 0,

δφµ1...µs = ∂(µ1
ξµ2...µs),

ΓνΓρΓλφνρλµ4...µs = 0, Γνξνµ2...µs−1 = 0,

(4.21)

6Γµ are the Clifford algebra generators and satisfy ΓµΓν + ΓνΓµ = 2ηµν , /∂ ≡ Γµ∂µ. Γ-trace is a

contraction of a spinor index and one tensor index with Γµ, e.g., Γνφ
µν ≡ Γα

ν βφ
β;µν .

7Obtained from the Lagrangian, equations of [54] have the form Gµ1...µs
− s

2
Γ(µ1

ΓνGνµ2...µs) −
s(s−1)

4
η(µ1µ2

Gν
νµ3...µs) = 0, Gµ1...µs

= /∂φµ1...µs
− s∂(µ1

Γνφνµ2...µs) = 0, which is equivalent to (4.22).
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where in order to get an off-shell gauge invariance the irreducibility of φα;(µ1...µs) has to be

relaxed to the triple Γ-tracelessness.

A massless totally anti-symmetric spin-Y{(1, p)} 1
2

field can be described off-shell by

a totally anti-symmetric spin-tensor field ωα;[µ1...µp] subjected to

/∂ωµ1...µp − p∂[µ1
Γνωνµ2...µp] = 0,

δωµ1...µp = ∂[µ1
ξµ2...µp],

(4.22)

Similar to the bosonic case, (4.22) possesses reducible gauge transformations. The differ-

ence is that one can impose the triple Γ-tracelessness on ωα;[µ1...µp] but this restricts the

first level gauge parameter to be Γ-traceless, Γνξνµ2...µp−1 = 0, and, hence, the second order

gauge parameter has to be on-mass-shell, i.e., /∂ξµ1...µp−2 = 0. Therefore, for equations of

motion to possess an off-shell gauge symmetry of all orders no Γ-trace conditions have to

be imposed on field/gauge parameters.

In the general case of a massless spin-Y = Y{(s1, p1), . . . , (sN , pN )} 1
2

field, the pattern

of gauge symmetries is given by the spin-tensors with the tensor part described by (4.19),

the definition of the Weyl tensor remains unchanged also.

The descriptions based on tensor field φµ1(s1),µ2(s2),...,µn(sn), which is analogous to the

metric gµν , are referred to as metric-like. At least in writing � ≡ ∂µ∂νη
µν the explicit

use of metric ηµν is made of, which complicates the issue of introducing interactions with

gravitation.

Let us note that in principle one can verify the gauge invariance of the field equations for

massless mixed-symmetry fields despite the fact that the very form of gauge transformation

is cumbersome due to Young symmetrizers. The advantage of the unfolded approach is in

that gauge invariance at all levels of reducibility is manifest.

5. Unfolding dynamics and σ
−

cohomology

In this section we, first, recall the definition of unfolding and the relation of the simplest

unfolded systems to Lie algebras/modules and Chevalley-Eilenberg cohomology with co-

efficients. Second, peculiar properties of unfolded systems that describe free fields and

specifically the so-called σ− cohomology concept are recalled. Third, the very procedure of

constructing the unfolded form is illustrated on the examples of massless spin-zero, spin-

one, arbitrary totally symmetric spin-s and spin-(s+ 1
2) fields, the relation with the general

statement of section 3 is pointed out in each of the examples.

5.1 General features

Some dynamical system is said to be unfolded [31 – 33] if it has the form

dWA = FA(W ), (5.1)

– 13 –



J
H
E
P
0
7
(
2
0
0
8
)
0
0
4

where WA is a set8 of differential forms of degree-qA on some d-dimensional manifoldMd,

d - exterior differential onMd and FA(W ) is an arbitrary degree-(qA + 1) function of WA

assumed to be expandable in terms of exterior (wedge) products only9

FA(W ) =

∞∑

n=1

∑

qB1
+···+qBn=qA+1

fAB1...Bn
WB1 ∧ . . . ∧WBn , (5.2)

where fAB1...Bn
are constant coefficients satisfying fAB1...BiBj ...Bn

= (−)
qBi

qBj fAB1...BjBi...Bn
.

Moreover, FA(W ) must satisfy the integrability condition (called generalized Jacobi iden-

tity) obtained by applying d to (5.1)

FB δF
A

δWB
≡ 0. (5.3)

Any solution of (5.3) defines a free differential algebra (FDA) [55 – 58]. If Jacobi identi-

ties (5.3) are satisfied irrespective ofMd dimension,10 the free differential algebra is referred

to as universal [10, 59]. It is the universal algebras only that will be considered further.

Equations (5.1) are invariant under gauge transformations

δWA
qA = dǫAqA−1 + ǫBqB−1

δFA

δWB
, for qA > 0, (5.4)

δWA
0 = ǫB

′
0

δFA

δWB′
1

, B′ : qB′ = 1, for qA = 0, (5.5)

where ǫAqA−1 is a degree-(qA− 1) form taking values in the same space as WA
qA . In its turn,

δWA
qA = 0 can be treated as unfolded-like system for ǫAqA−1, i.e., dǫAqA−1 = −ǫBqB−1

δFA

δWB ,

there emerge second level gauge transformations

δǫAqA−1 = dξAqA−2 − ξ
B
qB−2

δFA

δWB
, (5.6)

provided that FA(W ) is linear in matter fields and analogously for the gauge transfor-

mations at deeper levels. Therefore, the reducibility of gauge transformations is manifest

in the unfolded approach. For a degree-qA gauge field WA
qA there exist qA levels of gauge

transformations.

The use of the exterior algebra respects diffeomorphisms, which is very appropriate for

introducing interactions with the gravitation. The whole information about the dynamics

turns out to be contained in FA(W ) and one can even extend an unfolded system to other

manifolds [59] simply by changing the exterior differential, the new unfolded system has

literally the same form.

8In this section indices A, B, C are of arbitrary nature. In the cases of practical significance A, B, C

vary over certain irreps of the Lorentz algebra.
9The wedge symbol ∧ will be systematically omitted further.

10As the forms with the rank greater than d are identically zero, there exist certain identities, e.g.,

Wn ∧Wn ≡ 0 for n+m > d, which make the operator δ

δWA to be ill-behaved.

– 14 –



J
H
E
P
0
7
(
2
0
0
8
)
0
0
4

Note that introducing enough auxiliary fields it is possible to reformulate any dynam-

ical system in the unfolded form, although it may be difficult to unfold some particular

system or to find all unfolded forms.

Collected below are some important cases of unfolded systems, which have a direct

bearing on Lie algebras [55, 59].

Lie algebras/Flat connections. Let ΩI ≡ ΩI
µdx

µ be a subsector of degree-one forms.

The only self-closed unfolded equations are of the form

dΩI = −f I
JKΩJΩK . (5.7)

Generalized Jacobi identity (5.3) implies the Jacobi identity f I
JKf

J
LMΩKΩLΩM ≡ 0

for some Lie algebra g with structure constants f I
JK. Therefore, the closed subsector

of one-forms is in one-to-one correspondence with Lie algebras and (5.7) is the flatness

condition for a connection ΩI of g. This provides a coordinate-independent framework

for describing background geometry. In the cases of interest, g is iso(d− 1, 1), so(d−

1, 2), so(d, 1) and sp(2n) [59]. Background geometry connection ΩI is assumed to be

of order zero, whereas all matter fields, including dynamical gravitation, are of the

first order. All equations are assumed to be of the first order in matter fields and,

hence, describe free fields only.

In this paper g = iso(d− 1, 1) and ΩI = {̟a,b, ha}, where ̟a,b ≡ ̟a,b
µ dxµ is a

Lorentz spin-connection and ha ≡ ha
µdx

µ is a background vielbein, which defines

a non-holonomic basis of a tangent space at each point of the manifold. Flatness

equation (5.7) for iso(d− 1, 1)-connection ΩI reads

dha +̟a,
bh

b = 0,

d̟a,b +̟a,
c̟

c,b = 0.
(5.8)

The first is the zero torsion equation that expresses the Lorentz spin-connection via

the first derivative of ha
µ. The second can be recognized as the zero curvature equation.

For example, in Cartesian coordinates the explicit solution is ̟a,b
µ = 0 and ha

µ = δa
µ.

The advantage of description of background geometry as the flatness condition for

a connection of the space-time symmetry algebra is in that this way is coordinate-

independent. In what follows we assume ̟a,b, ha to satisfy (5.8), which is enough

if there is no need for the explicit form of the solution in some particular coordinate

system. For instance, in (anti)-de Sitter space (5.8) is modified by the terms

proportional to the cosmological constant λ2

dha +̟a,
bh

b = 0,

d̟a,b +̟a,
c̟

c,b + λ2hahb = 0
(5.9)

and admits no simple solutions with ha
µ = δa

µ, ̟a,b = 0. Nevertheless, without giving

the explicit solution, to imply that ̟a,b, ha satisfy (5.9) is sufficient for general

analysis, e.g., for constructing Lagrangians [60].
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Contractible FDA. The simplest equations linear in matter fields of the form

dWA
q = fABW

B
q+1 (5.10)

can be reduced by linear transformations to either

dWA
q = WA

q+1, dWA
q+1 = 0, (5.11)

or

dWA
q = 0, (5.12)

where the second equation of (5.11) is the consequence of Jacobi identities (5.3)

for the first one. In the first case, by virtue of gauge transformations (5.4)

δWA
q = dξAq−1 + χA

q , δWB
q+1 = dχA

q the field WA
q can be gauged away. In both

cases, by virtue of the Poincare’s Lemma these equations are dynamically empty

and correspond to the co-called contractible FDAs [55].

g-modules/Covariant constancy equations. Let WA
q be a closed subsector of q-forms

of matter gauge fields. Linear in matter fields equations may involve the background

g-connection ΩI , which is of zeroth order. Such equations referred to as linearized

over g background (described by any solution ΩI of (5.7)) have the form

dWA
q = −ΩIfI

A
BW

B
q . (5.13)

Jacobi identity (5.3), where (5.7) is also taken into account,

ΩJΩK
(
−f I

JKfI
A
B + fJ

A
CfK

C
B

)
WB

q = 0 (5.14)

implies fI
A
B to realize a representation of g. Therefore, the closed subsector of

forms of definite degree is in one-to-one correspondence with g-modules, whereas

DΩW
A
q ≡ dW

A
q + ΩIfI

A
BW

B
q = 0 (5.15)

is a covariant constancy equation and (DΩ)2 = 0 since the connection is flat (5.7). In

the cases of interest, A runs over certain finite-dimensional so(d− 1, 1)-irreps, i.e., g-

modules decompose with respect to its subalgebra so(d− 1, 1) ⊂ g into a direct sum of

certain irreducible tensors. This is why we single out the Lorentz-covariant derivative

DL from the whole g-covariant derivative DΩ, the remaining part acts vertically

(algebraically). In the case of ΩI being an iso(d − 1, 1) flat connection, the Lorentz

covariant derivative DL = d+̟ satisfy DL
2 = 0, as the exterior differential d does.

DLT
ab... = dT ab... +̟a,

cT
cb... +̟b,

cT
ac... + · · · (5.16)

In Cartesian coordinates DL ≡ d and we do not make any distinction between d

and DL, whereas in (anti)-de Sitter (DL)2 6= 0 and the difference between d and DL

has to be taken into account. Also, zero torsion equation (5.8.1) can be rewritten as

DLh
a = 0. The remaining part of ΩI , which acts algebraically and mixes different

so(d− 1, 1)-modules into g-modules is associated with the generators of translations

with gauge field ha.
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Gluing g-modules/Chevalley-Eilenberg cohomology. Let Wp, Wq and Wr take

values in g-modules R1, R2 and R3, the representations are realized by operators

T1, T2 and T3, respectively. Still linear in matter fields but nonlinear in background

connection ΩI equations are of the form

DΩWp ≡ dWp + T1(Ω)Wp = f12(Ω, . . . ,Ω)Wq,

DΩWq ≡ dWq + T2(Ω)Wq = f23(Ω, . . . ,Ω)Wr,

DΩWr ≡ . . . .,

(5.17)

where the terms forming g-covariant derivative are isolated on the l.h.s.

The two g-modules R1, R2 appear to be glued together by the term

f12(Ω, . . . ,Ω) ∈ Hom(Λp−q+1(g)⊗R2,R1). Jacobi identity (5.3) implies f12(Ω, . . . ,Ω)

to be a Chevalley-Eilenberg cocycle with coefficients in R∗
2 ⊗ R1, where R∗

2 is a

module contragradient to R2, and f12(Ω, . . . ,Ω)f23(Ω, . . . ,Ω) = 0. Coboundaries

can be proved to be dynamically empty and can be removed by a field redefinition.

Consequently, f12(Ω, . . . ,Ω) should be a nontrivial representative of the Chevalley-

Eilenberg cohomology group with coefficients in R∗
2 ⊗ R1. It follows also that

nothing but zero forms can be joined to zero forms, i.e., the only possible linearized

unfolded equations on forms of zero degree are (5.15) with q = 0.

For any dynamical system, linearized over certain g-background (described by any

solution ΩI of (5.7)), equations of motion (5.15) along with gauge transformations of all

orders of reducibility acquire a very simple form

δξ1 = DΩξ0,

. . . ,

δξp−1 = DΩξp−2,

δWp = DΩξp−1,

DΩWp = 0,

(5.18)

where Wp takes values in certain g-module R, DΩ is the associated g-covariant derivative

and ξp−k, k ∈ [1, p] are the gauge parameters of k-th order of reducibility taking values

in the same g-module R and being forms of degree (p − k). The gauge invariance at each

order of reducibility and of equations of motion is due to (DΩ)2 = 0. In some sense the

gauge fields Wp and the gauge parameters ξp−k seem to play the same role at the linearized

level. This uniformity is of essential importance when analyzing unfolded systems.

In the presence of gluing terms, e.g., when only two modules, say R1 and R2, are glued

by nontrivial Chevalley-Eilenberg cocycle fpr(Ω, . . . ,Ω) full chain of equations and gauge
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transformations (5.18) is modified to11

δξ11 = DΩξ
1
0,

. . . ,

δξ1p−r = DΩξ
1
p−r−1,

δξ1p−r+1 = DΩξ
1
p−r + fpr(Ω, . . . ,Ω)ξ20, δξ21 = DΩξ

2
0,

. . . , . . . , (5.19)

δξ1p−1 = DΩξ
1
p−2 + fpr(Ω, . . . ,Ω)ξ2r−2, δξ2r−1 = DΩξ

2
r−2,

δW 1
p = DΩξp−1 + fpr(Ω, . . . ,Ω)ξ2r−1, δW 2

r = DΩξ
2
r−1,

DΩW
1
p = fpr(Ω, . . . ,Ω)W 2

r DΩW
2
r = 0,

where W 1
p, ξ1p−k and W 2

r , ξ2r−m take values in g-modules R1 and R2, respectively. Im-

portant is that the gauge fields/parameters taking values in R2 contribute to the r.h.s. of

the equations/gauge transformations for the gauge fields/parameters taking values in R1

but for forms of degree greater than (p − r). The above two systems are nothing but the

specializations of (5.1), (5.4), (5.6).

Also, let us note that there is no strong reason to make any distinction between the

terms linear in the background g-connection ΩI , which correspond to g-modules, and the

terms of higher order in ΩI , which correspond to Chevalley-Eilenberg cocycles. Both

terms can be combined into a single object, the generalized covariant-derivative, D =

d+T (Ω)+f(Ω, . . . ,Ω) ≡ DΩ +f(Ω, . . . ,Ω) with the property D2 = 0. Moreover, by means

of D (5.19) and (5.18) can be rewritten in a similar manner. Consequently, at the linearized

level the most general unfolded equations and gauge transformations have the form

δξ1 = Dξ0,

. . . ,

δξp−1 = Dξp−2,

δWp = Dξp−1,

DWp = 0,

(5.20)

where D is built of d, background connection ΩI and satisfies D2 = 0. The gauge

fields/parameters take values in certain spaces Wq, viz., Wp ∈ Wp, ξp−1 ∈ Wp−1,. . . ,

ξ0 ∈ W0. The elements of Wq are differential forms with values in certain g-modules. It

is also convenient to define higher degree spaces Wq>p: the equations Rp+1 = DWp = 0

take values in Wp+1, Rp+2 = DRp+1 belongs to Wp+2 and by virtue of D2 = 0 satisfies

Rp+2 ≡ 0 and so on. Therefore, there exist certain identities, which belong to Wp+2, for

the equations, which belong to Wp+1, and there exist certain identities, which belong to

Wp+3 for the identities in Wp+2 and so on. At the field theoretical level these identities

correspond to Bianchi identities for the first level gauge transformations, higher identities

correspond to the Bianchi identities for the deeper levels of gauge transformations.

11The sign factor (−)p−r+1 before fpr(Ω, . . . ,Ω) is ignored and is thought of as the part of the definition

of fpr(Ω, . . . ,Ω).
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A remark should be made that the forms belonging to Wq may have different degrees

if there are Chevalley-Eilenberg cocycles present. As a result, spaces Wq may contain

different number of elements. For instance, (5.19) can be reduced to (5.20) if one defines

Wq =

{

{W 1
q}, q < p− r,

{W 1
q ,W

2
q−p+r}, q ≥ . (p− r),

(5.21)

whereW 1
q and W 2

q−p+r take values in g-modulesR1 andR2, respectively. In terms of (5.19)

the elements of Wq for q < (p − r) were referred to as ξ1q, the elements of Wq for q =

(p−r) . . . (p−1) to as ξ1q, ξ2q−p+r, the elements ofWq for q = p to as W 1
p, W 2

r , the elements

of Wq for q > p to as R1
q, R2

q−p+r (the equations of motion and Bianchi identities).

5.2 Interpretation of unfolded systems describing free fields

When describing free fields, unfolded formulations will be referred to as frame-like [61, 60],

though the very term frame-like has a more broad definition. These systems consist of

equations (5.7), describing background geometry, of a finite chain of (5.17)-like equations,

describing the gauge fields of the model and of (5.17)-like equations with q = 0 glued to

gauge forms, i.e., it requires a Lie algebra g (commonly iso(d−1, 1), so(d−1, 2) or so(d, 1)),

a set of g-modules R0,. . . ,RN and an appropriate set of nontrivial Chevalley-Eilenberg

cocycles f0,1,. . . ,fN−1,N . The physical degrees of freedom are contained in the forms of zero

degree and the module RN in which zero degree forms take values is infinite-dimensional.

Since frame-like unfolded systems contain inevitably infinitely many fields, most of

them being either auxiliary or Stueckelberg,12 there arises a problem of reconstruction a

metric-like formulation by a given unfolded formulation or of extracting the dynamical

content for a given unfolded system.

The questions to be answered are: what are the dynamical fields, what are the dif-

ferential gauge parameters and what are the gauge invariant equations of motion. These

answers are not universal and depend on the chosen scheme of interpretation. Different

interpretations correspond to dual descriptions of the same dynamical system.

Frame-like unfolded systems are endowed at the linearized level with additional struc-

tures, providing a natural way for interpretation. Indices A,B, . . . vary over certain finite

dimensional Lorentz irreps, i.e., each of Rn, n = 0, . . . , N decomposes as Rn =
∑

k Pn,k,

where Pn,k are certain so(d − 1, 1)-modules characterized by Y{n,k} Young diagrams of

section 3.

We say that some frame-like unfolded system is given an interpretation if [62]

1. On the whole spaceW =
⊕∞

q=0Wq, where the matter gauge fields, gauge parameters,

equations of motion and Bianchi identities take values, there exists a bounded from

below grading g = 0, 1, . . ., i.e., Wq =
⊕∞

g=0W
g
q. The homogeneous element of Wg

q is

a certain differential form with values in certain so(d − 1, 1)-irrep and is denoted as

W g
q . In simplest cases the grade is just the rank of the so(d− 1, 1)-irrep the element

of Wg
q takes values in.

12A field is called Stueckelberg if it can be gauged away by pure algebraic symmetry.
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2. The closed subsector of one-forms ΩI describes a background geometry, viz.,

Minkowski or (anti)-de Sitter. The generalized covariant derivative D is to be di-

vided into three parts, the last one not being necessary nontrivial

D = DL − σ− + σ+, (5.22)

where DL is a background Lorentz-covariant derivative and has a zero grade, σ−
is an operator of grade (−1) and σ+ contains positive grade operators. The only

differential part is in DL, whereas σ± acts vertically and is built of the background

vielbein ha. If two modules are glued the gluing element is supposed to be of grade

(−1) and also denoted as σ−.

The equations then have the form

DLW
n +

g−n
∑

i=1

σ+

(
W n+i

)
= σ−

(
W n+1

)
, g = 0, 1, . . . (5.23)

and analogously for the gauge transformations. In the flat space all operators of positive

grade appear to be trivial for the massless case. As it does not affect the analysis let us

consider a simplified version with σ+ = 0. Then, D2 = DL
2 +σ−DL +DLσ−+(σ−)2 = 0 is

equivalent to DL
2 = 0, (σ−)2 = 0 and σ−DL +DLσ− = 0. The first is a part of the flatness

condition (5.8) for the iso(d− 1, 1)-connection. The second is the nilpotancy condition for

σ−. The third is satisfied provided that σ− is twisted by the factor (−)∆g , where (∆g +1) is

a degree of σ−, which is equal to the number of the vielbeins ha that σ− is built of. Indeed,

the vielbeins ha anticommute with DL and, hence, the action of σ− is to be twisted by the

factor (−)∆g in order σ−DL +DLσ− = 0 holds true. Without further mention, the pure

sign factor (−)∆g will be though of as a part of the definition of σ−.

It is useful to illustrate the action of σ− when, for example, unfolded equations on

fields with values in two modules R1 and R2 are glued as in (5.19)

R1
︷ ︸︸ ︷
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︷ ︸︸ ︷ g-
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W 1
p

ξ1p−1

ξ10

W 2
r

ξ2r−1

ξ20

, (5.24)

where short arrows stand for the action of σ− within each module and long arrows for the

action of σ− between two modules (gluing terms) and dots stand for gauge fields/parameters

at different grades, bold dots represent the elements of Wp = {W 1
p,W

2
r }.
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All information about the dynamics turns out to be concealed in cohomology groups

of σ− [62], H(σ−) = Ker(σ−)
Im(σ−) . Let us analyze unfolded system (5.20), which at grade g has

the form

δξg
1 = DLξ

g
0 + σ−(ξg+1

0 ),

. . . ,

δW g
p = DLξ

g
p−1 + σ−(ξg+1

p−1),

0 = DLW
g
p + σ−(W g+1

p ),

(5.25)

Beginning from the deepest level of gauge transformations and from the lowest grade, it

is obvious that those ξg+1
0 that are not σ−-closed can be treated as Stueckelberg(algebraic)

gauge parameters for those ξg
1 that belong to the image of σ−. Therefore, those

ξg
1 that are σ−-exact can be gauged away. The leftover gauge symmetry satisfies

δξg
1 = DLξ

g
0 + σ−(ξg+1

0 ) = 0, so that those ξg+1
0 that belong to the coimage of σ− are

expressed via derivative of ξn
0 . Having sieved W0 and W1 in this way, only those ξg

0 are

still independent that are σ−-closed and hence belong to H
0(σ−), since only forms of

zero-degree are elements of W0. Then, those ξg+1
1 that are not σ−-closed can be treated

as Stueckelberg gauge parameters for those ξg
2 that belong to the image of σ−. Therefore,

only those ξg
1 are still independent that are σ−-closed but not σ−-exact and hence belong

to H
1(σ−). Having sieved W0,. . . ,Wp−1 one after another, it turns out that independent

differential gauge parameters at the k-th level are given by H
p−k(σ−). Analogously, those

fields W g
p that are σ−-exact can be gauged away by virtue of Stueckelberg gauge parameters

at Wp−1. Those fields W g+1
p that are not σ−-closed can be expressed via derivatives of

fields at lower grade by virtue of the equations Rg
p+1 ≡ DLW

g
p + σ−(W g+1

p ) = 0, these

fields are called auxiliary. Therefore, the dynamical fields, i.e., those that are neither

auxiliary nor Stueckelberg, are given by H
p(σ−). The nilpotency of D2 ≡ 0 implies certain

relations of the form DLR
g
p+1 + σ−(Rg+1

p+1) = 0 between Rg
p+1. Therefore, auxiliary

fields are expressed by virtue of σ−-exact Rg
p+1 and σ−-non-closed Rg+1

p+1 are themselves

expressed via derivatives of Rg
p+1. Consequently, the independent equations on dynamical

fields are given by H
p+1(σ−). From the cohomological point of view higher degree forms

correspond to certain nontrivial relations between equations called Bianchi identities and

manifest gauge nature of equations. As there are generally more than one levels of gauge

transformations, one can expect the higher cohomological group to be nontrivial.

To sum up, the field-theoretical meaning of the σ− cohomology groups is collected in

table 1.

To distinguish fields in cohomological sense the following convention is introduced [63]:

Stueckelberg fields(gauge parameters) are those that can be eliminated by pure al-

gebraic symmetry, i.e., these fields are σ−-exact (are those that can be used to gauge

away certain fields, i.e., these parameters are not σ−-closed).

Auxiliary fields are those that can be expressed via derivatives of some other fields, i.e.,

these fields are σ−-nonclosed. Let us note that this definition is generally ambiguous,
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cohomology group interpretation

H
p−k, k = 1 . . . p differential gauge parameters at the k-th level of reducibility

H
p dynamical fields

H
p+1 independent gauge invariant equations on dynamical fields

H
p+k+1, k = 1 . . . p Bianchi identities for the k-th order gauge symmetry

H
p+k, k > p supposed to be trivial in a regular case

Table 1: Field-theoretical meaning of the σ
−

cohomology groups.

e.g., in system

∂A = B,

∂B = A,
(5.26)

which field is auxiliary is a matter of choice. This ambiguity is removed by virtue of

grade [62, 63].

Dynamical fields are those that are neither auxiliary nor Stueckelberg, i.e., these fields

are representatives of σ−-cohomology classes.

Note that if certain dynamical field given by H
p belongs to the grade-gf subspace W

gf
p

and the corresponding equations given by H
p+1 belong to the grade-ge subspaceWge

p+1, the

order of equations is equal to ge − gf + 1.

If the unfolded system is supposed to admit a lagrangian formulation, there has to be a

one-to-one correspondence between the number of dynamical fields and that of equations,

k-th level gauge symmetries and k-th level Bianchi identities, i.e., in a certain sense there

should be a duality H
p−k ∼ H

p+1+k, k ∈ [0, p]. This takes place for all unfolded systems

exemplified in this paper.

Since the operators involved, i.e., DL and σ−, are of grade 0 and −1 only, the fields

with the grade greater than g0, for any g0 ≥ 0, form a quotient module, thus describing the

same system on its own - dual formulations. This picture partly breaks in (A)dSd because

of appearance of grade +1 nilpotent operator σ+.

D = DL + σ− + λ2σ+ (5.27)

The specific character of frame-like unfolded systems, which will be crucial for us,

is that by virtue of the inverse background vielbein hµ
a all form indices of any gauge

field/parameter W
a1(s1),...,ap(sm)
q can be converted to the fiber ones

W a1(s1),...,am(sm)|[d1...dq] = W a1(s1),...,am(sm)
µ1...µq

hµ1d1 . . . hµqdq . (5.28)

The resulting tensor W a1(s1),...,am(sm)|[d1...dq ] is not irreducible and can be decomposed into

so(d− 1, 1)-irreps according to the so(d− 1, 1)-tensor product rule

W a1(s1),...,am(sm)|[d1...dq ] =⇒ Y{s1, . . . , sm}
⊗

so(d−1,1)

Y{(1, q)} =
⊕

α

Yα, (5.29)
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where one-column Young diagram Y{(1, q)} of height-q represents the anti-symmetric in-

dices d1, . . . , dq and Yα are the so(d − 1, 1)-irreps the tensor product decomposes into.

Having converted all fields (parameters, equations) of a given unfolded system to the fiber

tensors one can make the identification of the fields in the unfolded approach and those of

the metric-like approach, though the general covariance, gauge invariance and other ad-

vantages of the unfolded formalism will be not manifest. While constructing the unfolded

formulations of a known metric-like systems or interpreting a given unfolded system in

terms of metric-like fields, this technique will be widely used. Moreover, the calculation of

σ− cohomology groups is largely based on the explicit evaluation of (5.29)-like expressions.

Once an unfolded form is known no use of this technique is needed either to generalize it

to other backgrounds or to introduce interactions.

Field W a1(s1),...,am(sm)|[d1...dq] is traceless in a1, . . . , am and d1, . . . , dq, separately. How-

ever, the cross traces need not vanish and, hence, some of Yα represent traces. To distin-

guish between the traces of different orders let us introduce the following: the Y-valued

degree-q form WY
q is said to be a trace of the r-th order iff it has the form

WY
q = h . . . h

︸ ︷︷ ︸

r

h . . . h
︸ ︷︷ ︸

q−r

CY′
0 (5.30)

for some Y′-valued degree-0 form CY′
0 , where (q − r) indices of the background vielbeins

ha are contracted with the tensor representing Y′ and r indices are free for the whole

expression to take values in Y, the appropriate Young symmetrizer is implied. When the

indices of WY
q are converted to the fiber ones, the expression takes the form η... . . . η...

︸ ︷︷ ︸

r

CY′
,

i.e., CY′
represents a trace of the r-th order.

Different aspects of unfolding are illustrated on the examples of a massless scalar field,

a massless spin-one field and a massless spin-s and spin-(s+ 1
2) fields.

5.3 Examples of unfolding

Example 1. Unfolding a scalar field [31, 62]. First, it should be noted that it is easy,

of course, to convert the Klein-Gordon equation �C = 0 to a system of first order equations

∂µC = Cµ,

∂µCµ = 0,
(5.31)

but when writing the second equation the explicit form of the metric is to be used, hence,

these equations are not of unfolded form (5.1).

Described in terms of a scalar field C(x), the theory is brought into a non gauge

form, therefore, zero-forms only are allowed, or else there would be some gauge symmetry

according to (5.4). The most general r.h.s. of dC = · · · has the form

dC = haC
a (5.32)

for some vector-valued zero-form Ca. This equation just parameterizes the first derivative

of C(x) and is similar to the first of (5.31). There are three terms allowed on the r.h.s.
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of dCa = · · ·

dCa = hbC
a,b + hbC

ab + haC ′ (5.33)

with Ca,b, Cab and C ′ taking values in antisymmetric, symmetric and scalar so(d − 1, 1)-

irreps, i.e., , , •. The first term is forbidden by Bianchi identity hadC
a ≡ 0. To

analyze the remaining terms let us decompose dCa into so(d− 1, 1)-irreps

∂µC
ahµb = ⊗ = ⊕ ⊕ •, (5.34)

where = ∂[aCb], = ∂(aCa) − 1
d
ηaa∂bC

b, • = ∂aC
a = �C.

The component represents Bianchi identity in the first order reformulation of the

Klein-Gordon equation. Indeed, expressing Ca as ∂aC implies ∂[aCb] ≡ 0. • represents the

desired Klein-Gordon equation, whereas is the only component allowed to be nonzero

on-mass-shell. Therefore, to impose the Klein-Gordon equation the term haC ′ has to be

omitted,

dCa = hbC
ab. (5.35)

The only possible r.h.s. for dCaa = · · · compatible with Jacobi identity hbdC
ab ≡ 0 is of the

form dCaa = hbC
aab for Caaa taking values in a rank-three symmetric so(d − 1, 1)-irrep,

i.e., . The process of unfolding continues unambiguously in this way and results in the

full system

dCa(k) = hbC
a(k)b ≡ F a(k)(C), k = 0, 1, . . . , (5.36)

where Ca(k) is rank-k totally symmetric traceless field, i.e., taking values in k

so(d− 1, 1)-irrep.

To make a connection with the general statement of section 3, for Y = Y{(0, 0)} the

general scheme results in

Yg : • . . .

{n, k} : {0, 0} {0, 1} {0, 2} {0, 3} . . .

g : g = 0 g = 1 g = 2 g = 3 . . .

qg : q0 = 0 q1 = 0 q2 = 0 q3 = 0 . . .

therefore, spaces Wq and operator σ− which enters D = DL − σ− should be defined as

Wq = {Wq,W
a
q ,W

aa
q , . . .},

σ−(W g
q) =

{

0, g = 0,

hbW
a(g−1)b
q , g > 0.

(5.37)

Consequently, W is a space of various differential forms with values in totally symmetric

traceless so(d−1, 1)-tensors, graded by the form degree and by the rank of so(d−1, 1)-irreps.

Space Wq forms an irreducible iso(d− 1, 1)-module. System (5.36) reads

Dω0 = 0, ω0 ∈ W0. (5.38)

The cohomology groups of σ− are easy to find:
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H
0(σ−) = C(x), as the lowest grade field is automatically closed, σ−(C) = 0, and it cannot

be exact as a form of zero degree. Contrariwise, zero-forms with grade greater than

zero are not closed, σ−(Ck+1) = hbC
a(k)b = 0⇐⇒ Ck+1 = 0;

H
1(σ−) = haB(x)0, for some B(x)0 ∈ W0

0. One-form Ba
1 = haB(x)0 is closed,

σ−(Ba
1) = haB

a
1 = hah

aB(x)0 ≡ 0, and it cannot be represented as σ−(C2) = hbC
ab

as far as Cab is traceless. The cohomology groups at higher grade are trivial since

σ−(haBa(k)(x)0) 6= 0 for k > 0;

H
q>1(σ−) = ∅, as one can make sure.

The interpretation in terms of section 5.2 is as follows: as is expected, the dynamical field

given by H
0 is C(x). The equations are given by the projection of dCa = hbC

ab to H
1,

i.e., �C = 0. The fields with k > 0 are auxiliary, being expressed via derivatives of C(x),

Ca(k) = ∂a . . . ∂aC(x). Inasmuch as there is no gauge symmetry in the system, the higher

cohomology groups are trivial.

An infinitely many dual formulations of a massless scalar field are also included. In-

deed, the fields with k ≥ k0 > 0 form a quotient module Rk0, i.e., one can consistently write

dCk = σ−(Ck+1), k ≥ k0. (5.39)

The first equation

dCa(k0) = hbC
a(k0)b (5.40)

imposes on the dynamical field Ca(k0)

∂bC
ba(k0−1) = 0,

∂[bCc]a(k0−1) = 0,
(5.41)

which imply, at least locally, Ca(k0) =

k0
︷ ︸︸ ︷

∂a . . . ∂a C and �C = 0, for some field C(x).

All fields at higher grade are auxiliary. This statement is confirmed by the coho-

mology analysis: H
0(Rk0 , σ−) = Ck0, i.e., scalar is described in terms of a traceless

rank-k0 symmetric tensor field subjected to the equations given by H
1(Rk0 , σ−) =

haB
a(k0−1)
0 − k0(k0−1)

2(d+2k0−4)η
aahcB

a(k0−2)c
0 + hcB

a(k0),c
0 , for B

a(k0−1)
0 , B

a(k0),c
0 taking values in

so(d − 1, 1)-irreps characterized by diagrams k0 − 1 ,
k0

. These two elements

represents just the components of Wk0
1 ∼ k0 ⊗ with the symmetry of k0 − 1

(trace) and
k0

, the third component with the symmetry of k0 + 1 is exact.

The above results can be easily extended to (A)dSd background and to a massive scalar

field [62],

DLC
k = σ−(Ck+1) + σ+(Ck−1) = 0, (5.42)

where there appears a nontrivial positive grade operator

σ+(Ck−1) = (m2 − λ2k(k + d− 1))

(

haCa(k−1) −
(s− 1)

d+ 2k − 4
ηaahbC

a(k−1)b

)

(5.43)
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and DL is a Lorentz-covariant derivative in (A)dSd. In the (A)dSd case the situation is

more interesting due to the appearance of σ+ operator and the possibility of the accidental

degeneracy of σ+ when m2 = λ2k′(k′ + d− 1) for some k′ [62]. �

Example 2. Unfolding Maxwell equations [64, 65]. An example of massless spin-

one field is more interesting as a gauge system. The main object is a one-form Aµ. From

gauge transformation law

δA1 = dξ0 (5.44)

it follows that there should not be other forms of rank greater than zero. If this were the

case the gauge parameters of these new forms would be involved by virtue of (5.4), making

the gauge law for A1 inappropriate. Indeed, there are two possibilities to introduce higher

degree forms on the r.h.s. of dA = · · · :

(i) dA1 = R2 for a scalar valued degree-two form R2, which possesses its own gauge

parameter χ1, δR2 = dχ1. In accordance with (5.4) the gauge transformation law for

A1 is modified to δA1 = dξ0 +χ1 so that A1 can be gauged away by virtue of Stueck-

elberg gauge parameter χ1. This case corresponds to contractible free differential

algebras (5.10).

(ii) dA1 = hbω
b
1 for a vector valued degree-one form ωa

1, which possesses its own gauge

parameter ǫa0.

In accordance with (5.4) the gauge transformation law for A1 is modified to δA1 = dξ0+hbǫ
b
0

so that A1 can be gauged away by virtue of Stueckelberg gauge parameter ǫa0. Consequently,

in both cases A1 can be made non-dynamical, which is not what was expected. Therefore,

the only possibility is to introduce a zero-form C
[ab]
0 , anti-symmetric in a, b, parameterizing

by virtue of

dA1 = hahbC
[ab]
0 (5.45)

the Maxwell field strength. Bianchi identity hahbdC
[ab]
0 ≡ 0 tolerates two terms on the

r.h.s of dC
[ab]
0 = · · ·

dC
[ab]
0 = hcC

[ab],c
0 + h[aC

b]
0 , (5.46)

with C
[ab],c
0 and Ca

0 taking values in and so(d − 1, 1)-irreps, the former taken in

antisymmetric basis. In order to determine which of the terms should be omitted, if any,

the decomposition of the first derivative of the Maxwell field strength into Lorentz irreps

has to be analyzed

C [ab]|c ≡ ∂µC
[ab]hµc = ⊗ = ⊕ ⊕ , (5.47)

where = ∂[aCbc], = ∂bC
ab, and = ∂cC [ab] − ∂[cCab] + 2

d−1η
c[a∂dC

b]d. ∂[aCbc] is

identically zero provided that C [ab] is expressed via the first derivative of Aµ, or represents

the second pair of Maxwell equations in terms of field strength C [ab]. In both cases,

this component should be zero and, moreover, this can not be kept nonzero as there is
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no hcC
[abc]-like term allowed on the r.h.s. of (5.46). The second, ∂bC

ab, is the desired

Maxwell equations in terms of Aµ, or the first pair of Maxwell equations in terms of the

field strength. Consequently, to impose Maxwell equations term h[aCb] has to be omitted,

whereas the third is the only component allowed to be nonzero on-mass-shell.

Again, unfolding continues unambiguously and requires an infinite set of fields C
[ab],c(k)
0

taking values13 in
k

to be introduced

dC [ab],c(k) = hdC
[ab],c(k)d, k = 0, 1, . . . (5.48)

The full system has the form

dA1 = hahbC
a,b
0 ≡ F (A,C), δA1 = dξ0,

dC
[ab],c(k)
0 = hdC

[ab],c(k)d
0 ≡ F [ab],c(k)(C), k = 0, 1, . . .

(5.49)

and represents two modules being glued together by the term on the r.h.s of the first equation.

For Y = Y{(1, 1)}, i.e., N = 1 and p = 1, the general scheme of section 3 results in

Yg : • . . .

{n, k} : {1, 0} {0, 0} {0, 1} {0, 2} . . .

g : g = 0 g = 1 g = 2 g = 3 . . .

qg : q0 = 1 q1 = 0 q2 = 0 q3 = 0 . . .

therefore,

Wq =

{

{W0}, q = 0,

{Wq,W
[ab]
q−1,W

[ab],c
q−1 , . . .}, q > 0,

(5.50)

let us point out the shortening of W0. The action of σ− on Wq ∈ Wq is defined as

σ−(W g
q) =







0, g = 0,

hahbW
[ab]
q−1, g = 1,

hdW
[ab],c(g−2)d
q−1 , g > 1.

(5.51)

With D = DL − σ−, unfolded system (5.49) can be rewritten as

Dω1 = 0, δω1 = Dξ0, (5.52)

where ω1 ∈ W1 and ξ0 ∈ W0. The fields at {n = 1, k = 0} ∼ g = 0 form a finite-

dimensional iso(d − 1, 1)-module, whereas the fields with {n = 0, k = 0, 1, . . .} ∼ g > 0

form an infinite-dimensional iso(d− 1, 1)-module.

Again, the cohomology groups are easy to find: gauge parameters are given by

H
0(σ−) = ξ0, dynamical fields by H

1(σ−) = A1, Maxwell equations by H
2(σ−) = h[aB

b]
0 ,

and the Bianchi identities for the first order gauge transformations by H
3(σ−) = hahbB0,

13The fields C[ab],c(k) are taken in antisymmetric basis, i.e., they are antisymmetric in a, b, symmetric in

c(k) and C[ab,d]c(k−1)≡0.

– 27 –



J
H
E
P
0
7
(
2
0
0
8
)
0
0
4

the rest of groups are empty H
k>3(σ−) = ∅. Important is the direct correspondence between

the number of fields in H
1 and the equations in H

2, the gauge parameters in H
0 and the

Bianchi identities in H
3.

There are infinitely many of non-gauge dual formulations based on C [ab],c(k0), e.g., for

k0 = 0 one recovers the Maxwell equations in terms of the field strength

∂[aCb,c] = 0,

∂bC
a,b = 0.

(5.53)

�

Let us note that the ambiguity at the first step of unfolding (the terms haC ′ and h[aCb]

in the above two examples) expresses the possibility of introducing a mass term.

Example 3. Unfolding a totally symmetric massless spin-s field [31, 64, 66].

We start from the metric-like description of a massless spin-s field in terms of a double-

traceless symmetric rank-s field φµ1...µs satisfying (4.13), the second order equations are

invariant with respect to the first order gauge transformation with traceless rank-(s − 1)

gauge parameter ξµ1...µs−1 . Inasmuch as the Young diagram s of so(d − 2) is of

the height one, there are gauge transformations of the first level only. Therefore, the dynam-

ical field in the unfolded approach has to be a one-form. There is only one way to identify

φµ1...µs and ξµ1...µs−1 with certain ωY0
1 and ξY0

0 taking values in the same so(d− 1, 1)-irrep

Y0, namely, Y0 = s− 1 , i.e., ω
a(s−1)
1 and ξ

a(s−1)
0 takes values in a rank-(s− 1) sym-

metric traceless tensors. Field φµ1...µs is identified with a totally symmetric part of ω
a(s−1)
1 ,

i.e., φµ1...µs = hb1
(µ1

. . . h
bs−1
µs−1ω

a1...as−1

µs)
ηa1b1 . . . ηas−1bs−1 , the double-tracelessness condition is

the consequence of the tracelessness of ω
a(s−1)
1 in a1 . . . as−1. ξµ1...µs−1 is identified with

ξ
a(s−1)
0 directly ξµ1...µs−1 = hb1

µ1
. . . h

bs−1
µs−1ξ

a1...as−1ηa1b1 . . . ηas−1bs−1 and one can make sure

that the Fronsdal’s gauge transformation law is recovered from δω
a(s−1)
1 = dξ

a(s−1)
0 . Field

ω
a(s−1)
1 has a redundant component with the symmetry of

s− 1
, which can be made

Stueckelberg by virtue of gauge parameter ξa(s−1),b with the same symmetry type, i.e.,

δω
a(s−1)
1 = dξ

a(s−1)
0 + hcξ

a(s−1),c
0 . (5.54)

It automatically follows that there is a degree-one gauge field ω
a(s−1),b
1 coupled with ω

a(s−1)
1

as

dω
a(s−1)
1 = hcω

a(s−1),c
1 . (5.55)

The only solution to Bianchi identity hcdω
a(s−1),c
1 ≡ 0 is14

dω
a(s−1),b
1 = hcω

a(s−1),bc
1 , (5.56)

where a new field with the symmetry of
s− 1

is introduced, and so on

dω
a(s−1),b(k)
1 = hcω

a(s−1),b(k)c
1 (5.57)

14The proof is not given as more general statement about the solutions of such equations is proved in the

next section.
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until the field with the symmetry of
s− 1

, for which the Bianchi identity solves as

dω
a(s−1),b(s−1)
1 = hchdC

a(s−1)c,b(s−1)d
0 , (5.58)

where field C
a(s),b(s)
0 represents a generalized Weyl tensor and has the symmetry of

s
. The solution of Bianchi identity hchddC

a(s−1)c,b(s−1)d
0 ≡ 0 has the form

dC
a(s),b(s)
0 = hc

(

C
a(s)c,b(s)
0 +

s

2
C

a(s)b,b(s−1)c
0

)

, (5.59)

where C
a(s+1),b(s)
0 has the symmetry of s

s+ 1
. The second term on the r.h.s.

of (5.59) supplements the first one to have a proper Young symmetry. Further unfold-

ing requires a set of degree-zero forms C
a(s+i),b(s)
0 , taking values in so(d − 1, 1)-irreps

characterized by Young diagrams s
s+ i

. The full system has the form

dω
a(s−1),b(k)
1 = hcω

a(s−1),b(k)c
1 ,

δω
a(s−1),b(k)
1 = dξ

a(s−1),b(k)
0 + hcξ

a(s−1),b(k)c
0 , k ∈ [0, s − 2],

dω
a(s−1),b(s−1)
1 = hchdC

a(s−1)c,b(s−1)d
0 , δω

a(s−1),b(s−1)
1 = dξ

a(s−1),b(s−1)
0

dCa(s+i),b(s) = hc

(

Ca(s+i)c,b(s)+
s

i+2
Ca(s+i)b,b(s−1)c

)

, i ∈ [0,∞).

(5.60)

By the construction the system incorporates Fronsdal’s field φµ1...µs with the correct gauge

law, but there is still to be proved that the Fronsdal’s equations are really imposed and

that there are no other dynamical fields in the system. Let us reconstruct Fronsdal’s

equations (4.13), whereas the second statement will be proved as a part of a more general

theorem. The first two equations of (5.60) read

∂µω
a(s−1)
ν − ∂νω

a(s−1)
µ = hcµω

a(s−1),c
ν − hcνω

a(s−1),c
µ , (5.61)

∂µω
a(s−1),b
ν − ∂νω

a(s−1),b
µ = hcµω

a(s−1),bc
ν − hcνω

a(s−1),bc
µ (5.62)

It is convenient to convert all world indices to the fiber ones

∂cωa(s−1)|d − ∂dωa(s−1)|c = ωa(s−1),c|d − ωa(s−1),d|c, (5.63)

∂cωa(s−1),b|d − ∂dωa(s−1),b|c = ωa(s−1),bc|d − ωa(s−1),bd|c, (5.64)

where ωa(s−1)|b ≡ ω
a(s−1)
µ hbµ, ωa(s−1),b|c ≡ ω

a(s−1),b
µ hcµ, ωa(s−1),bb|c ≡ ω

a(s−1),bb
µ hcµ.

Contracting (5.64) with ηbd and, then, symmetrizing c with a1 . . . as−1 results in

∂cω
a(s−1),c|a − ∂aω

a(s−1),c|
c
= 0. (5.65)

By symmetrizing in (5.63) a1 . . . as−1 with d

ωa(s−1),c|a = ∂cωa(s−1)|a − ∂aωa(s−1)|c (5.66)
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and, then, by contracting (5.63) with ηdas−1

ω
a(s−1),c|

c
= (s− 1)

(

∂cω
a(s−2)c|a − ∂aω

a(s−2)c|
c

)

(5.67)

all the terms of (5.65) can be expressed via ωa(s−1)|b. Plugging these to (5.65) gives

�ωa(s−1)|a − ∂a∂c

(

(s − 1)ωa(s−2)c|a + ωa(s−1)|c
)

+ (s− 1)∂a∂aω
a(s−2)c|

c
= 0, (5.68)

where ωa(s−1)|a is to be identified with Fronsdal’s field φa(s) as ωa(s−1)|a = 1
s
φa(s), then,

ω
a(s−2)c|

c
= 1

2φ
a(s−2)c

c
, (s − 1)ωa(s−2)c|a + ωa(s−1)|c = φa(s−1)c and the equation acquires

the Fronsdal’s form (4.13)

�φa(s) − s∂a∂cφ
a(s−1)c + s(s−1)

2
∂a∂aφ

a(s−2)c
c
= 0. (5.69)

For Y = Y{(s, 1)}, i.e., N = 1 and p = 1, the general scheme of section 3 results in

Yg : s− 1 . . .
s− 1 s

s
s+ 1

. . .

{n, k} : {1, 0} . . . {1, s − 1} {0, 0} {0, 1} . . .

g : g = 0 . . . g = s− 1 g = s g = s+ 1 . . .

qg : q0 = 1 . . . qs−1 = 1 qs = 0 qs+1 = 0 . . . ,

therefore,

Wq =

{

{W
a(s−1)
0 ,W

a(s−1),b
0 , . . . ,W

a(s−1),b(s−1)
0 }, q = 0,

{W
a(s−1)
q ,W

a(s−1),b
q , . . . ,W

a(s−1),b(s−1)
q ,W

a(s),b(s)
q−1 ,W

a(s+1),b(s)
q−1 , . . .}, q > 0,

(5.70)

and

σ−(W g
q) =







0, g = 0,

hcW
a(s−1),b(g−1)c
q , g ∈ [1, s − 1],

hchdW
a(s−1)c,b(s−1)d
q−1 , g = s,

hc

(

W
a(g−s−1)c,b(s)
q−1 + s

g−s+1W
a(g−s−1)b,b(s−1)c
q−1

)

, g > s.

(5.71)

With D = DL − σ− full system (5.60) can be rewritten as

Dω1 = 0, δω1 = Dξ0, (5.72)

where ω1 ∈ W1 and ξ0 ∈ W0. The fields at {n = 1, k = 0, . . . , s− 1} ∼ g ∈ [0, s− 1] form a

finite-dimensional iso(d−1, 1)-module, whereas the fields with {n = 0, k = 0, 1, . . .} ∼ g ≥ s

form an infinite-dimensional iso(d− 1, 1)-module.

The representatives of cohomology classes can be chosen as H
0 = ξ

a(s−1)
0 ,

H
1 = hbφ

a(s−1)b, H
2 = hbhcG

a(s−1)c − hahcG
a(s−2)bc + γηaahahcG

a(s−4)bcn
n

+ (βηabhahc +

αηaahbhc)G
a(s−3)cn

n
,15 H

3 = hbhahcχ
a(s−2)c, H

k>3 = ∅, where φa(s) and Ga(s) are

15α = − (s(d+s−5)−d+6)(s−2)
2(d+s−4)(d+2s−6)

, β = (s−2)
(d+s−4)

, γ = (d+s−6)(s−2)(s−3)
2(d+s−4)(d+2s−6)

.
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double-traceless tensor fields and ξa(s−1) and χa(s−1) are traceless. H
0,1 are nontrivial at

the lowest grade, whereas H
2,3 are nontrivial at grade-one, therefore, the order of equations

that are imposed on the dynamical field is equal to two. It turns out that there is no

need in the explicit form for α, β and γ, it is sufficient to find out the Young symmetry

of representatives only. The uniqueness of Fronsdal’s theory at the level of action was

demonstrated in [67] and at the level of equations in [6, 53]. Consequently, there is no need

for equations (5.69) to be found explicitly - those of Fronsdal are the only possible. Again,

there is a one-to-one correspondence between the number of fields in H
1 and the equations

in H
2, the gauge parameters in H

0 and the Bianchi identities in H
3. The system contains

an infinitely many of dual formulations, those that have field W
a(s−1),b(k0)
1 at the lowest

grade are gauge dual descriptions, whereas those that have field Ca(s+k0),b(s) at the lowest

grade are non-gauge. Dual description based on field W
a(s−1),b(1)
1 was elaborated in [68]. �

Example 4. Unfolding a totally symmetric massless spin-(s + 1
2 ) field [69, 70,

31]. Unfolding a totally symmetric massless spin-(s+ 1
2 ) field results in literally the same

unfolded system (5.60), (5.72) but with fields taking values in so(d − 1, 1)-irreps that are

irreducible spin-tensors with the same tensor part as in the bosonic case. Note that operator

σ− is not modified but the σ− cohomology groups are slightly changed such that the equations

become of the first order.

The Dirac equation. Unfolded system (5.36) or, equivalently, (5.38) describes a

massless spin-1
2 field provided that Ck take values in s 1

2
so(d − 1, 1)-irreps, i.e.,

Ck ≡ Cα;a(k) and Γα
b β
Cβ;ba(k−1) = 0. Contracting the first equation of (5.36)

∂µC
α = hµaC

α;a (5.73)

with hbµΓβ
b α

gives the Dirac equation

Γα
a β∂

aCβ = 0. (5.74)

the rest of equations express auxiliary fields in terms of derivatives of dynamical field Cα.

The Rarita-Schwinger equation. Unfolded system (5.49) or, equivalently, (5.52)

describes a massless spin-3
2 field provided that irreducible tensors in (5.50) are replaced

by the corresponding irreducible tensor-spinors, i.e., A1 ≡ Aα
µ, Ck ≡ Cα;[ab],c(k) and

Γα
b β
Cβ;[ab],c(k) = 0, Γα

d β
Cβ;[ab],dc(k−1) = 0. Contracting the first equation of (5.49)

1

2
(∂µA

α
ν − ∂νA

α
µ) = hµahνbC

α;[ab] (5.75)

with Γ-matrices and converting world indices µ, ν to the fiber ones according to Aα;a ≡

Aα
µh

aµ gives the Rarita-Schwinger equation

Γα
b β∂

bAβ;a − ∂aΓα
b βA

β;b = 0, δAα;a = ∂aξα. (5.76)

The rest of unfolded equations express auxiliary fields in terms of derivatives of dynamical

field Aα
µ.
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The Fang-Fronsdal equation for a spin-(s + 1
2) massless field. Unfolded

system (5.60) or, equivalently, (5.72) describes a massless spin-(s + 1
2) field provided that

irreducible tensors in (5.70) are replaced by the corresponding irreducible tensor-spinors.

With all world indices converted to the fiber ones the first equation of (5.60) has the form

Gα;a(s−1)|[cd] ≡ ∂cωβ;a(s−1)|d − ∂dωβ;a(s−1)|c = ωβ;a(s−1),c|d − ωβ;a(s−1),d|c, (5.77)

where ωα;a(s−1)|b ≡ ω
α;a(s−1)
µ hbµ, ωα;a(s−1),b|c ≡ ω

α;a(s−1),b
µ hcµ.

Analogously to the bosonic case, nonsymmetric component of ωβ;a(s−1)|d can be gauged

away algebraically. Hence, the Fronsdal’s field φα;a(s) is identified as ωα;a(s−1)|a = 1
s
φα;a(s).

Then, Γα
b β
φβ;a(s) = Γα

b β
ωβ;a(s−1)|b, Γα

b β
Γβ

c γφ
γ;a(s−2)bc = ηbcω

α;a(s−2)b|c and the Fronsdal’s

triple Γ-traceless constraint is a consequence of irreducibility of ωα;a(s−1)|b in α, a1 . . . as−1

and the lack of any conditions with respect to a1 . . . as−1 and b. Since the Fronsdal’s field

contains three irreducible components with the symmetry of s 1
2
, s-1 1

2
and

s-2 1
2
, the equations of motion has to be nontrivial in these three sectors too. The

projector on the dynamical equations is simply Γα
b β
Gβ;a(s−1),b|a and gives

Γα
b β∂

bφβ;a(s) − s∂aΓα
b βφ

β;a(s−1)b = 0, (5.78)

which is in accordance with (4.22). But we would like to note that there are two components

with the symmetry of s-1 1
2
, namely, ηbcG

α;a(s−2)b|ac and Γα
b β

Γβ
c γG

γ;a(s−1)|[bc]. The

correct projector on this component of the equations is given by the combination

2(s − 1)ηbcG
α;a(s−2)b|ac − γα

b βγ
β
c γG

γ;a(s−1)|[bc], (5.79)

which is identically zero when Gα;a(s−1)|[bc] is expressed via ωβ;a(s−1),c|d by virtue of (5.77).

Therefore, it is (5.79) that does not express certain part of ωβ;a(s−1),c|d in terms of

first derivatives of the dynamical field φα;a(s) and, thus, this is a dynamical equation.

Obviously, (5.79) is a representative of σ− cohomology group H
2
g=0. In terms of φα;a(s) the

representative has the form

Γα
b β∂

bΓβ
c γφ

γ;a(s−1)c − ∂cφ
α;a(s−1)c +

(s− 1)

2
∂aφ

α;a(s−2)c
c
= 0, (5.80)

which is equal to the Γ-trace of (5.78). The gauge transformations has the form

δφα;a(s) = ∂aξα;a(s−1), (5.81)

where Γα
b β
ξβ;a(s−2)b = 0.

Consequently, unfolded equations for totally symmetric bosonic fields are proved to

completely determine the unfolded equations for totally symmetric fermionic fields. Though

σ− is not modified in the fermionic case, σ− cohomology groups are changed, since the

fermionic dynamical equations are of the first order. �
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6. Unfolding mixed-symmetry fields

First, in section 6.1 an example of the simplest massless mixed-symmetry field of spin-

is investigated in detail and leading arguments are given for a spin- field. Second, the

general statement on arbitrary mixed-symmetry fields is proved, whereas technical details

are collected in sections 6.4 and 6.5. The analysis of the number of physical degrees of

freedom is carried out in section 6.3.

6.1 Simplest mixed-symmetry fields

Example 5. Spin- field. In the metric-like approach a spin- field is minimally

described [16, 17] by the subjected to (4.15) field φ[µµ],ν that takes values in a reducible

so(d − 1, 1)-representation ⊕ , the latter component is identified with the trace φ ν
µν, .

The gauge transformations (4.16) has two levels of reducibility, with two gauge parameters

ξS
(µν), ξ

A
[µν] taking values in ⊕•, so(d− 1, 1)-irreps at the first level and one parameter

ξµ taking values in so(d− 1, 1)-irrep at the second level (4.17).

First, the metric-like field φ[µµ],ν has to be incorporated into certain differential form

eYq , which is called a physical vielbein, the so(d−1, 1)-irrep Y and the degree q to be defined

below. To make the symmetries both of the first and of the second level of reducibility

manifest the degree of the physical vielbein has to be two, at least.

Moreover, were the physical vielbein taken to be a degree-one form, not all of the gauge

symmetries even at the first level would be manifest. Indeed, there are two possibilities for

physical vielbein eY1 to contain a component with the symmetry of . Namely, Y =

and Y = since ⊗ = ⊕ ⊕ and ⊗ = ⊕ ⊕ . The associated differential

gauge parameter is ξ0 , in the first case, and ξ0 , in the second case. Inasmuch as the

gauge parameters are the forms of degree-zero only one of the required two parameters is

present in each of the cases.

The degree of the physical vielbein has to be not greater than two if the component as-

sociated with the metric-like field φµµ,ν is required not to be a certain trace part. The reason

why a dynamical field should not be a certain trace part is explained in the next section.

Therefore, the physical vielbein has to be of degree-two and has to take values

in so(d − 1, 1)-irrep that belongs to the vector representation , i.e., e2 ≡ ea2 ≡ eaµν .

The associated gauge parameter ξ1 ≡ ξa
1 ≡ ξa

µ contains in its Lorentz decomposition

⊗ = ⊕ ⊕ • both anti-symmetric ξA
µν = ξa

[µh
b
ν]ηab and symmetric ξS

µν = ξa
(µh

b
ν)ηab

gauge parameters, the latter enters along with the trace ξa
µh

µ
a . There exists a second level

gauge parameter χa
0, which is directly identified with ξµ as ξµ = hb

µχ
aηab. There are no

redundant components in the gauge parameter. However, physical vielbein e2 contains

one redundant component in its decomposition into Lorentz irreps ⊗ = ⊕ ⊕ .

The first and the second components are to be associated with a traceful φµµ,ν, whereas

the third one, totally anti-symmetric component e[a|bc] of ea|bc = eaµνh
bµhcν, is a redundant

one and has to be made non-dynamical. In order to do so, algebraic gauge parameter ξ
[abc]
0
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with the symmetry of is introduced. It is obvious from pure algebraic gauge law

δea2 = hbhcξ
[abc]
0 (6.1)

that the redundant component can be fixed to zero and ea2 can be directly identified with φµµ,ν

as eaµµ = φµµ,νh
aν . From gauge transformation laws δea2 = dξa

1, δξ
a
1 = dχa

0, i.e., δeaµν =
1
2

(
∂µξ

a
ν − ∂νξ

a
µ

)
, δξa

µ = ∂µχ
a, required gauge transformations (4.16), (4.17) for metric-like

field φµµ,ν and for the first order gauge parameters ξS
(µν), ξ

A
[µν] are easily recovered.

Since in the unfolded approach each gauge parameter possesses its own gauge field and

vice-verse, associated with ξ
[abc]
0 gauge field ω

[abc]
1 enters as

dea2 = hbhcω
[abc]
1 , (6.2)

which determines the first equation. Applying d to this equation results in Bianchi identity

hbhcdω
[abc]
1 ≡ 0, which has a unique solution of the form

dω
[abc]
1 = hdhfC

[abc],[df ]
0 , (6.3)

with C
[abc],[df ]
0 having the symmetry of the generalized Weyl tensor of a spin- field,

i.e., it is anti-symmetric in [abc], [df ] and C
[abc,d]f
0 ≡ 0. To clarify the form of the

solution let C
[abc]|[df ]
0 be a degree-zero form anti-symmetric in [abc], [df ] and with no

definite symmetry between these two groups of indices. The Bianchi identity implies

hbhchdhfC
[abc]|[df ]
0 ≡ 0, which is equivalent to C

a[bc|df ]
0 ≡ 0 since vielbeins ha anticommute.

Therefore, the solution is parameterized by those components of C
[abc]|[df ]
0 ∼ ⊗ that has

the symmetry of Young diagrams with no more than three rows, since the requirement for

total anti-symmetrization of any four indices to give zero is the characteristic property of

Young diagrams with at most three rows. ⊗ ∋ is the only component of zero trace

order16 with three rows and there are no components with the number of rows less than

three. Alternatively, one could search for the solution in the sector of degree-one forms

as dω
[abc]
1 = hdC

[abc]|d
1 , with some C

[abc]|d
1 , but Bianchi identity hbhchdC

[abc]|d
1 ≡ 0 implies

that the only component of C
[abc]|d
1 ∼ ⊗ that is allowed must have less than three rows,

which is impossible since [abc] makes Young diagrams of ⊗ consist of three rows, at

least.17 Thus, one has to search for the solution among the forms of less degree.

16Although, there are trace components with the number of rows less than four, e.g., , their tensor

product by the metric ηab contains components with the symmetry of the sl(d)-Young diagrams with more

than three rows. Nontrivial trace with the symmetry of corresponds to the mass-like term. Hence,

traceful tensors either do not satisfy the Bianchi identities or introduce mass-like terms.
17Again, the trace component enters the tensor product as η ⊗ and has the number of rows not less

than three.
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Further unfolding requires a set of fields C [abc],[df ],g(k) with the symmetry of
k

to be introduced and the full system has the form

dea2 = hbhcω
[abc]
1 , δea2 = dξa

1 + hbhcξ
[abc]
0 , δξa

1 = dχa
0,

dω
[abc]
1 = hdhfC

[abc],[df ]
0 , δω

[abc]
1 = dξ

[abc]
0 ,

dC
[abc],[df ],g(k)
0 = hvC

[abc],[df ],g(k)v
0 . (6.4)

Consequently, the unfolded system incorporates field φµµ,ν with all required differential

gauge parameters at all levels of reducibility; the redundant component of the physical viel-

bein does not contribute to the dynamics. ω
[abc]
1 ∼ ⊗ = ⊕ ⊕ , the first component is

a field strength for the redundant field, once the field has been gauged away, the associated

field strength is zero and ω
[abc]
ρ = haµhbνhcλT[µνλ],ρ for some T[µνλ],ρ, T[µνλ,ρ] ≡ 0, which in-

corporates both and (as the trace). To recover equations (4.15) in terms of metric-like

fields it is convenient to convert all fiber indices to the world ones in the first two equations

∂[µe
a
νλ] = hb[µhcνω

abc
λ] , (6.5)

∂[µω
abc
ν] = hd[µhfν]C

abc,df , (6.6)

to substitute Tµνλ,ρ and to contract two indices in the second equation

∂[µφνλ],ρ = Tµνλ,ρ, (6.7)

∂ρTµνρ,λ − ∂λT
ρ

µνρ, = 0. (6.8)

Plugging (6.7) in (6.8) gives equation (4.15).

For Y = Y{(2, 1), (1, 1)}, i.e., N = 2 and p = 2, the general scheme of section 3

results in

Yg : . . .

{n, k} : {2, 0} {1, 0} {0, 0} {0, 1} . . .

g : g = 0 g = 1 g = 2 g = 3 . . .

qg : q0 = 2 q1 = 1 q2 = 0 q3 = 0 . . . ,

therefore,

Wq =







{W a
0 }, q = 0,

{W a
1 ,W

[abc]
0 }, q = 1,

{W a
q ,W

[abc]
q−1 ,W

[abc],[df ]
q−2 ,W

[abc],[df ],g
q−2 , . . .}, q > 1,

(6.9)

and

σ−(W g
q) =







0, g = 0,

hbhcW
[abc]
q−1 , g = 1,

hbhcW
[aaa],[bc]
q−2 , g = 2,

hdW
[aaa],[bb],c(g−3)d
q−2 , g > 2.

(6.10)
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with D = DL − σ− unfolded system (6.4) can be rewritten as

Dω2 = 0, δω2 = Dξ1, δξ1 = Dξ0 (6.11)

where ω2 ∈ W2, ξ1 ∈ W1 and ξ0 ∈ W0. The fields at {n = 2, k = 0} ∼ g = 0 and

{n = 1, k = 0} ∼ g = 1 form two finite-dimensional iso(d−1, 1)-modules, whereas the fields

with {n = 0, k = 0, 1, . . .} ∼ g ≥ 2 form an infinite-dimensional iso(d− 1, 1)-module. �

Example 6. Spin- field (briefly). In the case of a massless spin- field, there

are two gauge parameters at the first level of reducibility, which have the symmetry18 of

, , and one gauge parameter at the second level with the symmetry of . First, for

Y = Y{(3, 1), (2, 1)} the proposed scheme results in

Yg : . . .

{n, k} : {2, 0} {2, 1} {1, 0} {0, 0} {0, 1} . . .

g : g = 0 g = 1 g = 2 g = 3 g = 4 . . .

qg : q0 = 2 q1 = 2 q2 = 1 q3 = 0 q4 = 0 . . .

therefore, the physical vielbein has to be a two-form taking values in , i.e., e2 ≡ eaa,b
2 .

Associated gauge parameter ξ1 ≡ ξaa,b
1 has components ⊗ = ⊕ ⊕ , the

first two having the symmetry of the required gauge parameters, with the third one being

redundant. The last three components in the decomposition of the physical vielbein ⊗ =

⊕ ⊕ ⊕ are also redundant. By virtue of Stueckelberg symmetry with parameter

ξ1 these three components can be gauged away, inasmuch as ⊗ = ⊕ ⊕ . The

redundant component of the first level gauge parameter ξ1 also can be gauged away by

virtue of Stueckelberg symmetry with level-two gauge parameter ξ0 . Consequently, at least

the fact that the unfolded system incorporates the metric-like field, all the required gauge

parameters, and redundant components do not contribute to the dynamics is proved.�

6.2 General mixed-symmetry fields

Given a massless field of spin Y = Y{(s1, p1), . . . , (sN , pN )}, described by a metric-like field

φY(x), taking values in the irrep of the Lorentz algebra so(d−1, 1) with the same symmetry

type(minimal formulation) there exists a unique unfolded system with the physical vielbein

at the lowest grade and all symmetries being manifest that reproduces the original metric-

like system. The system has the form (3.1).

Sketch of the proof 1.

18To simplify the example no consideration is given to the trace components of the fields.
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1. The lowest grade field (physical vielbein) eY0
q0

turns out to be completely determined

by the requirement for it to contain the metric-like field and for its gauge param-

eters ξY0
q0−k

, k > 0 to contain all the necessary gauge parameters at all levels of

reducibility (4.19).

2. eY0
q0

and its gauge parameters appear to contain redundant components that have to

be made non-dynamical. The only way to achieve this is to introduce Stueckelberg

symmetry δeY0
q0

= σ1
−(ξY1

q1−1), δξY0
q0−1 = σ1

−(ξY1
q1−2), . . . with certain ξY1

q1−k
, k > 0,

which turns out to be unambiguously defined by this requirement.

3. ξY1
q1−1 has associated gauge field ωY1

q1
and gauge transformations δωY0

q0
= σ1

−(ξY1
q1−1)

completely determines the first equation deY0
q0

= σ1
−(ωY1

q1
), which implies Jacobi

identity σ1
−(dωY1

q1
) ≡ 0. The general solution is proved in section 6.4 to have the

form dωY1
q1

= σ2
−(ωY2

q2
) with certain ωY2

q2
. The second equation implies the second

Jacobi identity σ2
−(dωY2

q2
) ≡ 0 and so on.

4. Once, the total unfolded system is defined, the proof of the facts that (i) the correct

dynamical equations are imposed; (ii) there are no other dynamical fields or other

differential gauge symmetries in the system; is obtained through the calculations of

σ− cohomology groups. Ignoring the trace pattern of fields, i.e., for traceful tensors,

the proof of (ii) can be simplified and is done in this section. Even stronger statement

that there exists a duality H
p+1+k ∼ H

p−k is proved in section 6.5.

First, as it is clear from the examples above, the metric-like field φYM
(x) has to be incor-

porated into a differential form eY0
q of degree-q taking values in certain so(d−1, 1)-irrep Y0

(for this reason eY0
q is called physical vielbein). Having converted all world indices to fiber

ones in accordance with (5.29), so(d− 1, 1)-tensor product Y0 ⊗Y{(1, q)} of Y0 with one

column diagram of the height q must contain the component with the symmetry of YM .

In the case of the minimal formulation YM = Y, where Y = Y{(s1, p1), . . . , (sN , pN )}

characterizes the spin.

It is useful to introduce a notion of the quotient of two Young diagrams: let the quotient

of two Young diagrams Y1/Y2 be a direct sum of those diagrams, whose so(d−1, 1)-tensor

product by Y2 contains Y1. For the first sight, given q ≥ 0, any element Q of YM/Y{(1, q)}

might be chosen as Y0. If q is greater than the height of YM the component with the

symmetry YM in the tensor product Q⊗Y{(1, q)} has to be certain trace, inevitably.

Although, there is no apparent problems in considering unfolded systems with dynam-

ical field hidden in certain trace component of the physical vielbein, e.g., Maxwell gauge

potential Aµ might be identified with the trace eaµνh
µ
a of two-form eaµν . However, this exotic

incorporating of the physical field does not take place in the already known systems. More-

over, it can be proved that such exotic systems do not exist, if irreducible. Nevertheless,

they might be a part of some reducible system, which describes more than one field. There-

fore, we require the degree q of the physical vielbein to be not greater than the height of YM .

Inasmuch as
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1. the equations imposed on φY(x) possess reducible gauge transformations with the

number of levels equal to the height p =
∑i=N

i=1 pi of Y;

2. for a degree-q gauge field of an unfolded system there exist q levels of gauge trans-

formations;

the degree q of physical vielbein eY0
q must be equal to p.

The quotient Y/Y{(1, p)} contains only one element (provided φY(x) is forbid-

den to be a trace component), it is the diagram (3.2) with the symmetry of Y0 =

Y{(s1 − 1, p1), . . . , (sN − 1, pN )}, i.e., it is equal to Y without the first column. Therefore,

physical vielbein eY0
p is completely defined. So does gauge parameters ξY0

p−k at the k-th

level of reducibility, k ∈ [1, p]. The requirement for tensor product Y0 ⊗Y{(1, p − k)} to

contain all gauge parameters ξik given by (4.19) at the k-th level of reducibility is also

satisfied. Consequently, the whole pattern of fields/gauge parameters of the metric-like

formulation is reproduced. Note that Y0 ≡ Y0 and q0 = p in the terms of section 3.

Let us note that if one writes down the physical vielbein explicitly as e
a1(s1−1),...,ap(sp−1)
µ1...µp ,

where si are the lengths of the rows of Y and converts the form indices to the tangent ones

by virtue of inverse background vielbein hµa

ea1(s1−1),...,ap(sp−1)|[d1...dp] = e
a1(s1−1),...,ap(sp−1)
µ1...µp hµ1d1 . . . hµpdp , (6.12)

dynamical field φY(x) should be identified with ea1(s1−1),...,ap(sp−1)|a1...ap , which has the

symmetry of Y with some traces included. Consequently, the generalized Labastida’s

double-tracelessness condition (4.20) [20] is obvious, inasmuch as the contraction of two

metric tensor ηaiaiηaiai with the i-th group of indices vanishes.

Generally, in addition to φY(x), decomposition Y0 ⊗ Y{(1, p)} of physical vielbein

eY0
p into Lorentz irreps contains redundant components, which must not contribute to the

physical degrees of freedom. So does Y0⊗Y{(1, p − k)}, i.e., in addition to ξik it contains

a lot of components that can not be made genuine differential gauge parameters. There

are only two possible ways to get rid of redundant fields in the unfolded formalism:

A. redundant components could be directly fixed to zero by algebraic (Stueckelberg)

symmetry.

B. redundant components might be auxiliary fields for other fields (at lower grade) and

so on. The process stops since the grade is assumed to be bounded from below.

We require dynamical fields incorporated in the physical vielbein to be at the lowest grade.

Actually, (B) takes place for dual gauge descriptions, but not for the minimal. Therefore,

the only possibility to make redundant components to be non-dynamical is to introduce a

Stueckelberg symmetry with certain parameters ξY1
q1−k

δeY0
p = dξY0

p−1 + σ1
−(ξY1

q1−1), (6.13)

δξY0
p−1 = dξY0

p−2 + σ1
−(ξY1

q1−2), (6.14)

. . . . . . , (6.15)
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where σ1
− is a certain operator built of background vielbein ha that contracts a number of

indices of Y1 with ha . . . hc to obtain Y0. Diagram19 Y1 and form degree q1 can be easily

found since Y1 ⊗Y{1, q1 − i}, i > 0 must contain all redundant components of eY0
p and

ξY0
p−k.

In the unfolded formalism each gauge field possesses its own gauge parameter and vice-

versa. Therefore, there is a gauge field ωY1
q1

, which contributes to the equations for eY0
p as

deY0
p = σ1

−

(
ωY1

q1

)
. (6.16)

The first equation determines the first Jacobi identity of the form σ1
−(dωY1

q1
) ≡ 0, which

can be solved as

dωY1
q1

= σ2
−(ωY2

q2
) (6.17)

for certain gauge field ωY2
q2

and operator σ2
− that satisfies σ1

−σ
2
− ≡ 0. The general solution

of Jacobi identities is given in section 6.4. From now on let the superscripts of σ− be

omitted. The second equation determines the second Jacobi identity σ−(dωY2
q2

) ≡ 0, which

can be also solved and so on. Consequently, the knowledge of the lowest grade gauge

field eY0
p and of the Stueckelberg symmetries required to get rid of redundant components

determines the first equation, which by virtue of Jacobi identities determines the second

and so on. The total unfolded system has the structure

dω
Yg
qg = σ−

(

ω
Yg+1
qg+1

)

, g = 0, 1, . . . ,

δω
Yg
qg = dξ

Yg
qg + σ−

(

ξ
Yg+1

qg+1−1

)

,

δξ
Yg
qg = · · · .,

(6.18)

where σ− is certain algebraic operator built of background vielbein ha and (σ−)2 = 0.

The only facts remain to be proved are that there are no other dynamical fields and

that the proper correspondence (duality) between the cohomology groups holds true. To

this end it is sufficient to analyze only the so(d − 1, 1)-irreps content of H
q
g, i.e., only the

symmetry type and the multiplicity of irreducible Lorentz tensors that by virtue of (5.30)

are the representatives of H
q
g.

It is proved in the next section that there is a duality H
p−k
g=0 ∼ H

p+k+1
g=1 between the

σ− cohomology groups, which reveals the one-to-one correspondence between the gauge

dynamical fields and equations of motion, the level-k gauge symmetries and the level-k

Bianchi identities. The representatives of cohomology groups in the sector of fields and

gauge symmetries directly correspond to those of metric-like approach and there is no other

nontrivial cohomology in these sectors.

Though, the trace pattern of fields/gauge parameters is also important and the cal-

culation of σ− cohomology groups provides a comprehensive answer to this question, the

very procedure being a bit technical. Ignoring the trace pattern of the fields, it can be

easily proved that the required metric-like field is incorporated in physical vielbein eY0
q0

,

19The specific character of Minkowski massless fields is in that all Stueckelberg parameters can be incor-

porated into a single Y1-valued form, this not being the case for (anti)-de Sitter massless fields.
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all the redundant components of the physical vielbein can be gauged away by a pure al-

gebraic symmetry and the same holds for differential gauge parameters ξY0
q0−k at all levels

of reducibility, i.e., the required pattern of gauge parameters is recovered, whereas all the

redundant components are either Stueckelberg or auxiliary. This is the necessary condition

only and the traces has to be taken into account. Also, it is still to be proved that the

correct equations of motions are imposed. Provided that there are no trace conditions on

the fields, the system is referred to as off-shell [65]. An off-shell system may contain only

constraints that express auxiliary fields via the derivatives of the dynamical field, imposing

no restrictions on the latter.

The off-shell system. Technically, ignoring the traces is equivalent to the replace-

ment of all so(d−1, 1)-irreps by the sl(d)-irreps that are characterized by the same Young

diagrams, i.e., instead of taking so(d− 1, 1)-tensor products one needs to apply the sl(d)-

tensor product’s rules, which are much simpler. The decomposition of the physical vielbein

eY0
q0

into sl(d)-irreps is given by diagrams Y{αi} of the form

αN+1

sN − 1

pN

αN

s2 − 1

p2

α2

s1 − 1

p1

α1

, (6.19)

where α1 + · · · + αN+1 = q0 = p. The decomposition of Stueckelberg gauge parameter

ξY1
q1−1 for eY0

q0
has the components of the same form but with αN+1 ≥ 1 because Y1 (3.3)

has already the form of Y0 with one cell in the bottom-left. Therefore, all components

of eY0
q0

except for those with αN+1 = 0 are of Stueckelberg type, but there is only one

component of eY0
q0

with αN+1 = 0, namely, it has αi = pi, i ∈ [1, N ] and, hence, has the

symmetry of Y. The decomposition of level-k differential gauge parameter ξY0
q0−k has the

form (6.19) with α1 + · · · + αN+1 = p − k and, again, all the components of ξY0
q0−k

with

αN+1 ≥ 1 can be gauged away by pure algebraic symmetry with ξY1
q1−k−1. Consequently,

there is a complete matching between (4.19) and those in ξY0
q0−k that are not pure gauge

themselves. It can be easily proved also that, if ignoring the traces, there are no other

dynamical fields/differential gauge parameters at higher grade. Consequently,

Lemma 1. H(σ−) with respect to sl(d) are given by

H
k(σ−)sl(d) =

{

Y{αi} : g = 0, α1 + · · ·+ αN = k, αN+1 = 0, k ≤ p

∅, k > p.
(6.20)
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The triviality of the higher k > p cohomology groups for sl(d), which should contain

equations of motion and Bianchi identities, is expected since the system is off-shell. For

the equations to have the second order in derivatives the only nontrivial cohomology group

H
p+1 must be at the grade-one, i.e., H

p+1
g=1 6= ∅. As is seen from the examples above, the

equations correspond to those representatives of H
p+1
g=1 that are certain traces. Indeed, the

total rank |W
Yg
qg |, which is equal to the sum qg + |Yg| of degree qg and rank of Yg, is

preserved by σ−. Therefore, |W
Yg
qg | = |WY0

q0
| + g and |RY1

q1+1| = |ωY0
q0
| + 2 = |Y| + 2,

where eY0
q0
∈ Wg=0

p and RY1
q1+1 ∈ W

g=1
p+1 contain metric-like field φYM

(x) and the equations

on φY(x), respectively. Consequently, the representative of H
p+1
g=1 that corresponds to the

equations on the traceless part of φY(x) has to be identified with certain trace of the first

order and so on for the traces of φY(x).

The calculation of σ− cohomology groups carried out in section 6.5 implies

1. The only nontrivial cohomology groups are H
p−k
g=0 and H

p+k+1
g=1 , k = 1, . . . , p. Therefore,

the dynamical fields and independent gauge parameters belong to the zero grade

Wg=0
q subspaces; the equations are of the second order and the Bianchi identities for

the k-th level gauge symmetries are of the (k + 2)-th order.

2. H
p−k
r,g=0 ∼ H

p+k+1
r+k+1,g=1, i.e., there is a one-to-one correspondence between the elements

of H
p−k
g=0 that are traces of the r-th order and the elements of H

p+k+1
g=1 that are traces

of the (r + k + 1)-th order. Roughly speaking, H
p ∼ H

p+1, H
p−1 ∼ H

p+2 and so on.

Therefore, there is a one-to-one correspondence between the dynamical fields and the

equations of motion, the level-k gauge symmetries and the k-th Bianchi identities.

3. The so(d − 1, 1)-irreps that correspond to the elements of H
p−k(σ−) and are the

traces of the zeroth order are given by the so(d− 1, 1)-Young diagrams that have the

form (6.19) with αN+1 = 0 and α1 + · · · + αN = p− k, which exactly reproduce the

required pattern (4.19). Note that certain higher order traces are also the elements of

cohomology groups. These fields represent the ’auxiliary’ fields of the metric-like for-

mulation, which had to be introduced to make the gauge symmetry off-shell. To prove

the theorem it is not necessary to know the concrete trace pattern, the duality between

the cohomology groups is sufficient. The details of the trace pattern are in section 6.5.

In the fermionic case the traces are substituted for Γ-traces. Important is that acting on

tensor indices only, σ− does not break down the irreducibility of spin-tensors. The duality

has the form H
p−k
r,g=0 ∼ H

p+k+1
r+k+1,g=0 or simply H

p−k
g=0 ∼ H

p+k+1
g=0 , which means that equations

are of the first order and the duality between fields/equations, gauge symmetries/Bianchi

identities takes place, which completes the proof.

Note, that Yg=s1 ≡ Y{n=0,k=0} has the symmetry of the generalized Weyl tensor for a
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spin-Y massless field

sN
pN

s2
p2

s1

p1 + 1

. (6.21)

Analogously to the examples of section 5.3, massless mixed-symmetry fields can be de-

scribed by the same unfolded system (3.6) that is restricted to Wg
q with g ≥ g0, i.e., the

system contains infinitely many dual formulations. As the generalized Weyl tensor and its

descendants are non-gauge fields, the dual descriptions with g0 ≥ s1 are non-gauge and the

dual descriptions with 0 < g0 < s1 are gauge.

6.3 Physical degrees of freedom counting

Notwithstanding the simplicity of the unfolded form and the uniqueness of unfolding, there

still might be a question of whether the unfolded equations do describe the correct number

of physical degrees of freedom.

It is well-known that for systems with the first class constraints only, with massless

fields belonging to this class, the counting of degrees of freedom is that one first level

gauge parameter kills two degrees of freedom, one second level gauge parameters kills

three degrees of freedom, and so on. For example, a spin-two massless field possesses
d(d−3)

2 degrees of freedom, which is just d(d+1)
2 − 2d, d(d+1)

2 and d being the number of

components of φµν and ξµ.

The complete information concerning the ’number’ of fields/gauge parameters, i.e.,

the multiplicity and the symmetry of corresponding tensors, is contained in H
k
g=0(σ−) for

k = 0 . . . p. Not only can a number of physical degrees of freedom be calculated but the

whole exact sequence that defines an iso(d − 1, 1) irrep can be derived. The elements of

this sequence are certain so(d − 1) tensors that define an so(d − 2) tensor as a quotient

of so(d − 1) tensors, e.g., (4.18). The decomposition of so(d − 1, 1)-fields into irreducible

tensors of so(d − 1) can be done with the aid of ∂µ or, after Fourier transform, with the

aid of momentum pµ.

For example, for a spin-two field the cohomology groups that correspond to the dy-

namical fields/differential gauge parameters and its decomposition into so(d−1) irreps are

given in table 2.

Quick sort of Young diagrams in 0 −→ 2H0 −→ H
1 −→ H (0; ) −→ 0 gives the

correct exact sequence 0 −→ −→ −→ H (0; ) −→ 0, which defines a massless

spin-two irrep H (0; ).

For the simplest mixed-symmetry field, the hook- , there are two levels of gauge

transformation, hence, relevant cohomology groups are H
0, H

1 and H
2 (see table 3). Again,
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so(d− 1, 1)-representatives reduction from so(d− 1, 1) to so(d− 1)

H
0 ∼ ξµ ⊕ •

H
1 ⊕ • ∼ φµν , φν

ν 6= 0 ⊕ ⊕ 2•

Table 2: Relevant representatives of cohomology groups for massless spin-two field and its reduction

to so(d− 1).

so(d− 1, 1)-representatives reduction from so(d− 1, 1) to so(d− 1)

H
0 ∼ ξµ ⊕ •

H
1 ⊕ ⊕ • ∼ ξA

µν ⊕ ξ
S
µν , ξSν

ν 6= 0 ⊕ ⊕ 2 ⊕ 2•

H
2 ⊕ ∼ φµν,λ, φ ν

µν, 6= 0 ⊕ ⊕ ⊕ 2 ⊕ •

Table 3: Relevant representatives of cohomology groups for massless spin- field and its reduction

to so(d− 1).

quick sort of diagrams in 0 −→ 3H0 −→ 2H1 −→ H
2 −→ H

(

0;
)

−→ 0 gives exact

sequence (4.18).

Consequently, the problem of calculation the number of physical degrees of freedom, to

be precise, of deriving the exact sequence, is effectively reduced to the simple combinatoric

problem of (i) decomposition so(d−1, 1)-Young diagram representatives of H(σ−) to so(d−

1)-diagrams; (ii) cancellation of like terms in sequence

0 −→ (p + 1)H0 −→ pH1 −→ . . . −→ 2Hp−1 −→ H
p −→ H (0;Y) −→ 0. (6.22)

Skipping combinatoric technicalities we state that in the general case of a spin-Y massless

mixed-symmetry field (6.22) reduces to the correct exact sequence that defines a uirrep

H (0;Y) of iso(d− 1, 1).

6.4 Solving the generalized Jacobi identities

Unfolding some dynamical system there arises a problem of solving Jacobi identities (5.3)

that have schematically a form h . . . hdω1...
q ≡ 0, where a number of background vielbeins

ha is contracted with the fiber indices of ω1...
q . The Jacobi identity restricts dω1...

q to have

a certain specific form dω1...
q = h . . . hω2...

r , where the so(d− 1, 1)-irrep, in which ω2...
r takes

values, the degree r and the projector built of h . . . h are completely determined. The

solutions are given by20

20As was pointed out in section 5.3 nonzero traces either violate Bianchi identities or introduce mass-like

terms and, therefore, are ignored.
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Lemma 2. A. Let ω
a1(s),...,ap(s),b(k)
q be a degree-q form taking values in Y =

Y{(s, p), (k, 1)} so(d− 1, 1)-irrep. The general solution of

hcdω
a1(s),...,ap(s),b(k−1)c
q = 0 (6.23)

has the form

dω
a1(s),...,ap(s),b(k)
q =







hcω
a1(s),...,ap(s),b(k)c
q , k < s,

hc . . . hcω
a1(s)c,...,ap(s)c,ap+1(s)c
q−p−1 , k = s, q ≥ p+ 1,

0, k = s, q < p+ 1,

(6.24)

where ω
a1(s),...,ap(s),b(k+1)
q and ω

a1(s+1),...,ap(s+1),ap+1(s+1)
q−p−1 take values in Y{(s, p), (k + 1, 1)}

and Y{(s+ 1, p + 1)} so(d− 1, 1)-irreps, respectively.21

Proof. The parametrization of dωq by a degree-(q + 1) form taking values in the same

so(d − 1, 1)-irrep, dω
a1(s),...,ap(s),b(k)
q = R

a1(s),...,ap(s),b(k)
q+1 , obviously fails to satisfy (6.23).

Inasmuch as (6.23) contains a vielbein, the solution has to contain a number of vielbeins

too. The most general parametrization of dω
a1(s),...,ap(s),b(k)
q with only one vielbein included

has the form dω
a1(s),...,ap(s),b(k)
q = hdω

a1(s),...,ap(s),b(k)|d
q for some q-form taking values in a

tensor product of Y by a vector representation, i.e., there is no definite symmetry between

index d and the rest of the indices.

hchdω
a1(s),...,ap(s),b(k−1)c|d
q = 0←→ ω

a1(s),...,ap(s),b(k−1)[c|d]
q = 0. (6.25)

Only those irreps in Y ⊗ are allowed that have c and d symmetric, i.e., corre-

spond to Y{(s, p), (k + 1, 1)}, for k < s. This is not possible in the case k = s, i.e.,

Y = Y{(s, p + 1)}, and the only possibility to have c and d symmetric is to add the whole

column to Y, which requires dω
a1(s),...,ap(s),b(k)
q to be represented as dω

a1(s),...,ap(s),b(k)
q =

hc . . . hcω
a1(s−1)c,...,ap(s−1)c,ap+1(s−1)c
q−p−1 and, therefore, q must be large enough. Roughly

speaking, the proof is based on the fact that the anti-symmetrization of two indices at

the same row of a Young diagram is identically zero, the anti-symmetrization being due to

contraction with vielbeins.

Note that choosing nonmaximal solutions of Jacobi identities results in lowering the

gauge symmetry so that not all redundant components are excluded.

Unfolding totally-symmetric massless higher-spin fields the possible r.h.s. terms in

dω
a(s−1),b(t)
1 = · · · are restricted by Jacobi identities and an essential use is made of

Corollary 1. The solution of Jacobi identity

hcdω
a(s−1),b(t−1)c
1 ≡ 0 (6.26)

is of the form

dω
a(s−1),b(t)
1 =

{

hcω
a(s−1),b(t)c
1 t < s− 1,

hchdC
a(s−1)c,b(s−1)d
0 t = s− 1.

(6.27)

21The symmetric basis is used, being more convenient in this case as the contracted with vielbeins tensors

are already irreducible.
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The following statement is a generalization of the Lemma-A to the case where {(s, p), (k, 1)}

is a ’subdiagram’ of a larger Young diagram Y that has a number of rows prece-

dent/succedent to {(s, p), (k, 1)}. Appropriate Young symmetrizers have to be included

as the mere contraction of a number of vielbeins breaks the irreducibility of the tensor. For

instance, hcω
a(s1),b(s2−1)c is already irreducible with the symmetry of Y{s1, s2 − 1}, but

this is not the case for hcω
a(s1−1)c,b(s2), which has to be added one term hcω

a(s1−1)c,b(s2) +
1

s1−s2+1hcω
a(s1)b,b(s2−1)c to get the symmetry of Y{s1 − 1, s2}.

Lemma 3. B. Let ω
....,a1(s),...,ap(s),b(k),....
q be a degree-q form taking values in Y =

Y{(. . . , (s, p), (k, 1), . . .} so(d− 1, 1)-irrep, where the dots stands for the blocks in Y prece-

dent/succedent to {(s, p), (k, 1)}. The general solution of

Π
[

hcdω
....,a1(s),...,ap(s),b(k−1)c,....
q

]

= 0, (6.28)

where Π [. . .] is a Young symmetrizer to Y{. . . ., (s, p)(k − 1, 1), . . .}, has the form

dω
....,a1(s),...,ap(s),b(k),....
q =







Π
[

hcω
....,a1(s),...,ap(s),b(k)c,....
q

]

, k < s,

Π
[

hc . . . hcω
....,a1(s)c,...,ap(s)c,ap+1(s)c,....
q−p−1

]

, k = s, q ≥ p+ 1,

0, k = s, q < p+ 1,

(6.29)

where ω
....,a1(s),...,ap(s),b(k+1),....
q and ω

....,a1(s+1),...,ap(s+1),ap+1(s+1),....
q−p−1 takes values in

Y{. . . , (s, p), (k + 1, 1), . . .} and Y{. . . , (s + 1, p+ 1), . . .} so(d − 1, 1)-irreps, respectively,

and Π [. . .] is a Young symmetrizer to Y{. . . ., (s, p), (k, 1), . . .}.

Proof. The proof is similar to that of Lemma-A with the only comment that the sym-

metrizers do not affect the argumentation that anti-symmetrization of two indices in the

same row is identically zero.

6.5 Dynamical content via σ− cohomology

Before discussing the calculation of σ− cohomology, let us first recall necessary facts con-

cerning the evaluation of so(d− 1, 1)-tensor products. Let P(ǫ1, . . . , ǫN |m) be a number of

integer partitions k1 + · · ·+ kN = m of m, where ki is constrained by ki ≤ ǫi and different

rearrangements of ki satisfying the constraints are regarded as distinct partitions. The

generating function for the partition P(ǫ1, . . . , ǫN |m) is

∑

m

P(ǫ1, . . . , ǫN |m)tm =
i=N∏

i=1

(1− tǫi+1)

1− t
(6.30)

These integer partitions gives the multiplicities of irreps in so(d − 1, 1)-tensor products

(Clebsh-Gordon coefficients) we are interested in [71].
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The so(d−1, 1)-tensor product of an arbitrary irrep Y∗ = Y{(si, pi)} by a one-column

diagram of the height q∗ can be explicitly calculated as

sN

pN

s2

p2

s1

p1

⊗

q =
∑

{αj},{βi}

N{αj},{βi}

αN+1

βN

αN

ǫNpN
sN

β2

α2

ǫ2p2 s2

β1

α1

ǫ1p1 s1

,

(6.31)

where αi, βi : αi + βi ≤ pi, i ∈ [1, N ], αN+1 ≥ 0 and there exist ρ ≥ 0 such that

q∗ =
i=N∑

i=1

(αi + βi) + αN+1 + 2ρ. (6.32)

The multiplicity N{αj},{βi} of Y∗
{αj ,βi}

is given by integer partition

N{αj},{βi} = P(ǫ1, . . . , ǫN |ρ), ǫi = pi − αi − βi (6.33)

and the total trace order r is

r =

i=N∑

i=1

βi + ρ (6.34)

Roughly speaking, to obtain an element of the tensor product one should, first, cut off from

bottom-right of the i-th block a column of height βi−γi, pi ≥ βi−γi ≥ 0 (to take different

traces) and, second, add an arbitrary number αi + γi, pi ≥ αi + γi ≥ 0 of cells to each

block, provided the γi cells annihilate, i.e., they are added to the places from which γi cells

were removed at the first stage. Multiplicity may be different from one due to different

rearrangements of γi, i.e., when multiplied by the rest of q-column different traces can give

rise to the same diagram. The number of such rearrangements is given by P(ǫ1, . . . , ǫN |ρ),

ρ =
∑i=N

i=1 γi. For instance, sl(n)-tensor product ⊗ is given simply by

⊗sl(n) = ⊕ ⊕ ⊕ . (6.35)
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The so(d)-tensor product can be represented as a sum of the form

⊗so(n) = ⊗sl(n)
︸ ︷︷ ︸

zeroth order traces

⊕
c c

⊗sl(n)

⊕
c

c

⊗sl(n)

︸ ︷︷ ︸

first order traces

⊕

⊕
c c

c c

⊗sl(n)
︸ ︷︷ ︸

2nd order

=










⊕ ⊕ ⊕
︸ ︷︷ ︸

zeroth order traces










⊕

⊕







⊕ 2 ⊕
︸ ︷︷ ︸

first order traces







⊕

︸︷︷︸

2nd

order

, (6.36)

where the sum is over trace order and the boxes that are connected by the arc are to be

contracted and, then, the sl(n)-product rules are to be applied to the rest of the diagrams.

Evaluating the so(d − 1, 1)-tensor product of an arbitrary spinor-irrep Y∗ =

Y{(si, pi)} 1
2

by a one-column diagram of the height q∗ one can contract any number of Γ

matrices with the indices of the column and then multiply, therefore, the tensor product

rule for spin-tensors can be reduced to bosonic rule (6.31) as

Y{(si, pi)} 1
2
⊗so(n) Y{(1, q)} =

q
∑

k=0

(
Y{(si, pi)} ⊗so(n) Y{(1, q − k)}

)

1
2

, (6.37)

for example,

1
2
⊗so(n) = 1

2
⊕ 1

2
︸ ︷︷ ︸

zeroth order Γ-traces

⊕

1
2
⊕ 1

2
︸ ︷︷ ︸

first order Γ-traces

⊕

⊕

2 1
2

︸︷︷︸

2nd order Γ-traces

⊕

• 1
2

︸︷︷︸

3d order Γ-traces

. (6.38)

The multiplicity N
1
2

{αj},{βi}
of Y∗

{αj ,βi}
1
2

is given by

N
1
2

{αj},{βi}
=

i=ρ
∑

i=0

P(ǫ1, . . . , ǫN |ρ− i). (6.39)

Let us now analyze the origin of σ− cohomology. Its action σ− :Wg
q →W

g−1
q+1 preserves

g+ q and hence the whole complex C(W, σ−) is a direct sum of complexes C(q′, σ−), where

q′ refers to the end element Wg=0
q′ of the complex

C(q′, σ−) : 0 −→ . . . −→ Wg=1
q′−1

−→Wg=0
q′ −→ 0. (6.40)
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Moreover, σ− preserves the total rank (the form degree + rank of the so(d − 1, 1)-irrep

in which the field takes values). Let W
a(s1),...,a(sm)
q be an element of Wg

q′ . When all form

indices of W
a(s1),...,a(sm)
q are converted to the fiber ones according to (5.29)

W a1(s1),...,am(sm)|[d1...dq] = W a1(s1),...,am(sm)
µ1...µq

hµ1d1 . . . hµqdq , (6.41)

the action of σ− is just an anti-symmetrization of all d1, . . . , dq with those indices ai that are

extra as compared to Yg−1 plus some terms to restore the correct Young symmetry of Yg−1.

Let the decomposition of W a1(s1),...,am(sm)|[d1...dq ] into so(d− 1, 1)-irreps be of the form

Y{a1(s1), . . . , am(sm)}
⊗

Y{(1, q)} =
⊕

r=0

⊕

ir

N r
irY

r
ir , (6.42)

where the summation is over the trace order r and, then, over ir, which enumerates all

so(d−1, 1)-irreps that enters in the tensor product as the traces of the r-th order, N r
ir

being

the multiplicity of Yr
ir

. The multiplicity of the zeroth order traces is always equal to one,

N0
i0

= 1. In fact, the diagrams Y 0
i0

can be directly obtained by the sl(n)-tensor product rule.

The very anti-symmetrization is insensitive to whether a certain component enters as

a trace or not. When decomposed into so(d − 1, 1)-irreps the elements of Wg
q′ and Wg−1

q′+1

have a number of components of the same symmetry type. The action of σ− is just a

linear transformation that either sends the whole so(d − 1, 1)-irrep to zero22 or sends it

to the components of Wg−1
q′+1

of the same symmetry type. Important is that σ− does not

act between different so(d − 1, 1)-irreps. Therefore, complex C(q′, σ−) is a direct sum of

complexes, parameterized by so(d−1, 1)-irreps Y′ that are given by various tensor products

Y{n,k}

⊗

Y{(1, q)} (6.43)

provided that the field W
Y{n,k}
q is an element of Wg′−i

q′+i for certain i. When reduced to

such a complex

C(Y′, q′, σ−) : 0→ . . .→ Vg → Vg−1 → . . .→ 0 (6.44)

the action of σ− is a linear transformation between the spaces Vg → Vg−1, dimensions of

which are equal to the multiplicity of Y′ in the decomposition of W
Yg
qg and W

Yg−1
qg+1

. The

action of σ− is maximally non-degenerate compatible with nilpotency. Therefore, to find

cohomology groups the dimension of each linear space in every complex has to be calculated.

Let us note, that only the types and multiplicities of so(d−1, 1)-irreps are found below,

i.e., no attention is paid to the description of how the corresponding tensors are contained

in the fields WY
q′ . This is sufficient for our purposes, though, it is obvious (6.12) how the

metric-like field φYM
is incorporated in an element of Wg=0

p .

The calculation of σ− cohomology is divided into three cases that cover the whole

variety of so(d− 1, 1)-irreps that can result from the tensor products (6.43).

22provided that the appropriate basis on the space of so(d− 1, 1)-irreps with the same symmetry type is

chosen.
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In the Lemmas below it is assumed that complex C(Y′, q′, σ−) is parameterized by

so(d − 1, 1)-irrep Y′ = Y∗
{αj ,βi}

of the form (6.31) with Y∗ = Y{n,k}, q
∗ = q such that

W
Y{n,k}
q ∈ C(q′, σ−) and ρ is defined according to (6.32).

In the first case Y′ is an element of Y0 ⊗Y{(1, q)}

Lemma 4. The σ− cohomology groups H
q
g=0 and H

q
g=1 are nontrivial and are given by

H
q
g =







Y{(si − 1, pi)}{αj ,βi}
M{αj ,βi} :

αN+1 = 0,
∑i=N

i=0 αi = q,
q ∈ [0, p], g = 0,

H
2p−q−1, q ∈ [p + 1, 2p + 1], g = 1,

∅, q > 2p+ 1, any g,

(6.45)

where M{αj ,βi} is the multiplicity of the irrep Y{(si − 1, pi)}{αj ,βi}
, defined below.

Proof. From the very form of Y{n=N,0} ≡ Yg=0 ≡ Y{(si − 1, pi)} it follows that the

so(d − 1, 1)-irreps that the element of Wg=0
q ∼ Y0 ⊗ Y{(1, q)} decomposes into may be

contained in Wg=1
q−1 only, i.e., Wg=0

q and Wg=k
q−k contain no so(d − 1, 1)-irreps of the same

symmetry type for k > 1. Therefore, the length of complex C(Y′, q, σ−), where Y′ ∈

Y0⊗Y{(1, q)} is equal to one, i.e., C(Y{(si − 1, pi)}{αj ,βi}
, q, σ−) : 0 −→ V1 −→ V0 −→ 0,

where the dimensions of V0 and V1 are given by the multiplicities of the so(d − 1, 1)-irrep

Y{(si − 1, pi)}{αj ,βi}
in Wg=1

q−1 and Wg=0
q , respectively,

dim(V1) =







{

P(ǫ1, . . . , ǫN |ρ− 1) ρ ≥ 1,

0, ρ = 0,
αN+1 = 0,

P(ǫ1, . . . , ǫN |ρ), αN+1 > 0,

dim(V0) = P(ǫ1, . . . , ǫN |ρ), (6.46)

If αN+1 > 0 the dimensions of V0 and V1 are equal and each irreducible component of

Wg=0
q with αN+1 > 0 can be gauge away by virtue of the corresponding element of Wg=1

q−1,

thus being exact. H
k>2p+1 = ∅, inasmuch as ρ ≤ p and the components of the forms

with rank greater than (2p + 1) must have αN+1 > 0, thus being exact. If αN+1 = 0 the

dimensions are different, dim(V1) < dim(V0) for q ≤ p, dim(V1) = dim(V0) for q = p + 1

and dim(V1) > dim(V0) for q > p. Therefore, the number of those Y{si, pi}{αj ,βi}
∈ Wg=0

q ,

q ≤ p that are not exact is equal to M{αj ,βi} = |dim(V1)−dim(V0)|, the same is the number

of those Y{si, pi}{αj ,βi}
∈ Wg=1

q−1, q > p + 1 that are not exact. The obvious property of

integer partitions

P(ǫ1, . . . , ǫN |m) = P(ǫ1, . . . , ǫN |ǫ1 + · · · + ǫN −m) (6.47)

results in the important duality in the cohomology groups H
p−k
r,g=0 ∼ H

p+k+1
r+k+1,g=1 or, roughly

speaking, H
p ∼ H

p+1, H
p−1 ∼ H

p+2 and so on.

The second case is the complex C(Y′, q′, σ−), where Y′ is an element of the tensor

product Y{n,k} ⊗Y{(1, q)} for certain q ≥ 0 with 1 < k < kmax
n − 1.
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Lemma 5. If Y′ is an element of the tensor product Y{n,k}⊗Y{(1, q)} for certain q′ ≥ 0

with 1 < k < kmax
n − 1, the complex C(Y′, q′, σ−) is acyclic.

Proof. The complex has the length two, i.e., 0 −→ V0 −→ V1 −→ V2 −→ 0, where

the dimensions are given by dim(V0) = P(ǫ1, . . . , ǫN |ρ), dim(V1) = P(ǫ1, . . . , ǫN , 1|ρ+ 1),

dim(V2) = P(ǫ1, . . . , ǫN |ρ+ 1). Simple calculations with generating functions results in

dim(V0) < dim(V1), dim(V2) < dim(V1) and dim(V0)− dim(V1) + dim(V2) = 0 and, conse-

quently, the sequence is exact.

Analogously,

Lemma 6. If Y′ is an element of the tensor product Y{n,k} ⊗Y{(1, q)} for certain q ≥ 0

with k = 0 and n < N , the complex C(Y′, q′, σ−) is acyclic.

Proof. The speciality of such Y′ is that the complex has the length three, i.e., 0 −→ V0 −→

V1 −→ V2 −→ V3 −→ 0, where the dimensions are given by

dim(V0) = P(ǫ1, . . . , ǫN |ρ),

dim(V1) = P(ǫ1, . . . , ǫn−1, ǫn + 1, ǫn+1, . . . , ǫN |ρ),

dim(V2) =

{

P(ǫ1, . . . , ǫn−1, pn − ǫn, ǫn+1, . . . , ǫN |ρ− ǫn − 1) ρ ≥ ǫn + 1,

0, otherwise,
,

dim(V3) =

{

P(ǫ1, . . . , ǫn−1, pn − ǫn − 1, ǫn+1, . . . , ǫN |ρ− ǫn − 2) ρ ≥ ǫn + 2,

0, otherwise,
,

Again, simple calculations with generating functions results in appropriate inequalities and

dim(V0)− dim(V1) + dim(V2)− dim(V3) = 0 and, consequently, the sequence is exact.

The above three cases covers the whole variety of the so(d−1, 1)-tensors that can result

from the tensor products Y{n,k}⊗Y{(1, q)} for any n, k and q. The cases with sN = 1 and

Y = Y{0} are special but the calculation of cohomology groups leads to the same result.

In the fermionic case, the computations are similar due to the multiplicity given

by (6.39). The difference is that all nontrivial cohomology is concentrated in grade zero.

Indeed, taking into account (6.46), where P(ǫ1, . . . , ǫN |ρ) is to be replaced by (6.39), it

follows that dim(V0) ≥ dim(V1) for all q and H
p−k
r,g=0 ∼ H

p+k+1
r+k+1,g=0, where r is referred to

the Γ-trace order, or, roughly speaking, H
p ∼ H

p+1, H
p−1 ∼ H

p+2 and so on.

7. Conclusions

The unfolded system constructed in the paper has a simple form of a covariant constancy

equation and describes arbitrary mixed-symmetry bosonic and fermionic massless fields in

d-dimensional Minkowski space. The gauge fields/parameters are differential forms with

values in certain finite-dimensional irreducible representations of the Lorentz algebra that

are uniquely determined by the generalized spin.

The key moment is that all gauge symmetries are manifest within the unfolded for-

mulation, which is of most importance in controlling the number of physical degrees of

– 50 –



J
H
E
P
0
7
(
2
0
0
8
)
0
0
4

freedom when trying to introduce interactions. Unfolded systems are formulated in terms

of differential forms, which is a natural way to respect diffeomorphisms and, hence, to

describe systems that include gravity.

Though, the necessary conditions for the system to have a lagrangian description are

satisfied, i.e., the fields are in one-to-one correspondence with the equations and the k-th

level gauge symmetries are in one-to-one correspondence with the k-th Bianchi identities,

the very lagrangian remains to be constructed.

Another interesting moment is that the unfolded equations for bosons are the same as

for fermions, namely, the operators involved, i.e., exterior differential d and σ−, remains

unmodified when tensors are replaced with spin-tensors. Though this nice property partly

breaks down in (anti)-de Sitter space, within the unfolded approach bosons and fermions

have much in common, the fact being very useful for supersymmetric theories.

The proposed unfolded system includes all non-gauge dual descriptions, which are

based on the generalized Weyl tensor and its descendants, but not all of gauge dual

descriptions. It would be interesting to construct an unfolded system that contains all

dual formulations.

The interactions of the totally symmetric massless higher-spin fields are known to re-

quire a nonzero cosmological constant, i.e., are formulated in (anti)-de Sitter space [2].

Mixed-symmetry fields exhibit some interesting features in the presence of cosmological

constant. For example, not all of the Minkowski gauge symmetries can be deformed to

(anti)-de Sitter [72]. As a result massless mixed-symmetry fields have more degrees of free-

dom in (anti)-de Sitter compared to its Minkowski counterparts [73] and in the Minkowski

limit a massless mixed-symmetry field splits in a certain collection of massless fields, gener-

ally. Contrariwise, a single mixed-symmetry field can not be smoothly deformed to (anti)-

de Sitter. Another interesting effect is the existence of the so-called partially-massless

fields [74 – 84], the fields that have a number of degrees of freedom intermediate between

that of massless and massive and split in a set of massless fields in the Minkowski limit.

Therefore, the extension of the proposed approach to (anti)-de Sitter space seems to be

non-trivial but nevertheless worth being investigated.

In a series of papers [85, 61, 86, 60] it was suggested so-called frame-like approach to

the general mixed-symmetry fields in (anti)-de Sitter. To generalize the proposed in the

present paper unfolded system to (anti)-de Sitter case and to compare to that of [60] is the

next step to perform.

We consider the proposed unfolded system as the first stage in constructing the full

interacting theory of mixed-symmetry fields.

Acknowledgments

The author appreciates sincerely M.A. Vasiliev for reading the manuscript and making

many detailed and valuable suggestions and illuminating comments, the very work was

initiated as the result of discussions with M.A. Vasiliev. The author is also grateful to R.R.

Metsaev and K.B. Alkalaev for useful discussions and to O.V. Shaynkman for discussion

of the fermionic case. The work was supported in part by grants RFBR No. 05-02-17654,

– 51 –



J
H
E
P
0
7
(
2
0
0
8
)
0
0
4

LSS No. 4401.2006.2 and INTAS No. 05-7928, by the Landau Scholarship and by the

Scholarship of Dynasty foundation.

A. Multi-index convention

The multi-index notations is used: a group of indices in which certain tensor is symmetric

or is to be symmetrized is denoted either by one letter with the number of indices indicated

in round brackets, or by placing a group of indices in round brackets, e.g.,

T a(s) ≡ T a1a2...as : T a1...ai...aj ...as = T a1...aj ...ai...as (A.1)

V aT a(s) ≡ V (a1T a2...as+1)≡
1

s+1
(V a1T a2a3...as+1 +V a2T a1a3...as+1 +· · ·+V as+1T a1a2...as)

(A.2)

V (bT a(s)) ≡ V (bT a1...as)≡
1

s+1

(

V bT a1a2...as +V a1T ba2a3...as +· · ·+V asT ba1a2...as−1

)

(A.3)

Analogously, the group of indices in which certain tensor is anti-symmetric or is to be

anti-symmetrized is denoted by placing indices in square brackets, e.g.,

T a[s] ≡ T a1a2...as : T a1...aiai+1...as = −T a1...ai+1ai...as (A.4)

V [bT a[s]] ≡ V [bT a1...as] ≡
1

s+ 1

(

V bT a1a2...as − V a1T ba2a3...as + · · ·+ (−)sV asT ba1a2...as−1

)

(A.5)

The operators of (anti)-symmetrization are weighted to be projectors (the factor 1
s+1

above).

B. Young diagrams

Comprehensive information on Young diagrams can be found, for example, in the

textbook [71].

Definition 1. Given an integer partition, i.e., a nonincreasing sequence {si, i ∈ [1, n]},

si ≥ si+1 of positive integers (or nonnegative when it is convenient to work with a sequence

of a fixed length), associated Young diagram Y{s1, s2, . . . , sn} is a graphical representation

consisting of n left-justified rows made of boxes, with the i-th row containing si boxes.

s10
s11

s1
s2
s3
s4

s5
s6
s7

s8
s9
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Finite-dimensional irreducible representation(irrep) of sl(d), i.e., various irreducible

sl(d)-tensors, are in one-to-one correspondence with Young diagrams of the form

Y{s1, s2, . . . , s[ d
2
]}. The associated irreducible tensors

T

s1
︷ ︸︸ ︷
a . . . a,

s2
︷ ︸︸ ︷

b . . . b,... (B.1)

or, in condensed notation, T a(s1),b(s2),... have at most [d2 ] groups of indices, being symmetric

in each group separately, and satisfy the condition that the symmetrization of any group

of indices with one index of any of the subsequent groups is identically zero, i.e.,

T a(s1),...,(b(sk),...,b)c(sj−1),... ≡ 0, k < j. (B.2)

If s[ d
2
] 6= 0 and d is even the (anti)-selfduality condition has to be imposed for appropriate

signature. (anti)-selfduality is conventionally denoted by the sign factors +(−) before s[ d
2
].

In this paper we do not consider (anti)-self dual representations.

A scalar representation Y{0, 0, . . . , 0} is denoted by •, a vector irrep Y{1, 0, . . . , 0} by

, rank-two symmetric tensor irrep by , rank-two antisymmetric tensor irrep by

and so on.

Finite-dimensional irreducible representations of so(d) are of the two types: tensor and

spin-tensor; and are also characterized by Young diagrams, which in the case of spin-tensor

irreps refer to the symmetry of the tensor part. Young diagrams that correspond to spin-

tensor irreps are labeled by 1
2 -subscript. Spinor indices α, β, γ = 1 . . . 2[ d

2
] are placed first

and are separated from tensor indices by ”;”. For example, a spinor ψα irrep is denoted by

• 1
2
, a vector-spinor irrep Aα;aby 1

2
and so on. To make tensors irreducible, in addition

to the Young symmetry condition, the tracelessness condition with respect to each pair of

indices is to be imposed

ηccT
a(s1),...,cb(si−1),...,cd(sj−1),...,f(sn) ≡ 0, i = 1 . . . n, j = 1 . . . n, (B.3)

To make spin-tensors irreducible, in addition to the Young symmetry condition, Γ-

tracelessness condition with respect to each tensor index and a spinor index is to be imposed

Γα
c βT

β;a(s1),...,cb(si−1),...,f(sn) ≡ 0, i = 1 . . . n, (B.4)

where Γα
c β satisfy Γα

a βΓβ
b γ

+ Γα
b β

Γβ
aγ = 2ηab. Additional conditions on spinors, viz.,

Majorana, Weyl and Majorana-Weyl are irrelevant to the problems concerned. Also, in

both cases it is required for the sum of the heights of the first two columns of Young

diagrams to be not greater than d. Note that the Γ-tracelessness condition is stronger

than the tracelessness one and applying the Γ-tracelessness twice to two symmetric indices

gives the tracelessness

0 = 2Γα
a βΓβ

b γ
T γ;(ab) = ηabT

α;ab. (B.5)

To handle with arbitrary large Young diagrams the so-called block representation is

used, i.e., the rows of equal lengths are combined to blocks

Y{(s1, p1), . . . , (sn, pn)} ≡ Y{

p1
︷ ︸︸ ︷
s1, . . . , s1,

p2
︷ ︸︸ ︷
s2, . . . , s2, . . . ,

pn
︷ ︸︸ ︷
sn, . . . , sn}. (B.6)
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